BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 10899951)

  • 1. Modulation of hypothalamic NMDA receptor function by cyclic AMP-dependent protein kinase and phosphatases.
    Nijholt I; Blank T; Liu A; Kügler H; Spiess J
    J Neurochem; 2000 Aug; 75(2):749-54. PubMed ID: 10899951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serotonin 5-HT2 receptor activation potentiates N-methyl-D-aspartate receptor-mediated ion currents by a protein kinase C-dependent mechanism.
    Blank T; Zwart R; Nijholt I; Spiess J
    J Neurosci Res; 1996 Jul; 45(2):153-60. PubMed ID: 8843032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C.
    Durand GM; Gregor P; Zheng X; Bennett MV; Uhl GR; Zukin RS
    Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9359-63. PubMed ID: 1409641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C.
    Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR
    Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMDA receptor-mediated stimulation of rat cerebellar nitric oxide formation is modulated by cyclic AMP.
    Toms NJ; Roberts PJ
    Eur J Pharmacol; 1994 Jan; 266(1):63-6. PubMed ID: 8137885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phosphoprotein DARPP-32 mediates cAMP-dependent potentiation of striatal N-methyl-D-aspartate responses.
    Blank T; Nijholt I; Teichert U; Kügler H; Behrsing H; Fienberg A; Greengard P; Spiess J
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14859-64. PubMed ID: 9405704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor.
    Snyder GL; Fienberg AA; Huganir RL; Greengard P
    J Neurosci; 1998 Dec; 18(24):10297-303. PubMed ID: 9852567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the mouse retinal taurine transporter (TAUT) by protein kinases in Xenopus oocytes.
    Loo DD; Hirsch JR; Sarkar HK; Wright EM
    FEBS Lett; 1996 Sep; 392(3):250-4. PubMed ID: 8774855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein kinases modulate two glycine currents in salamander retinal ganglion cells.
    Han Y; Slaughter MM
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):681-90. PubMed ID: 9518725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of cAMP-dependent protein kinase in mu-opioid modulation of NMDA-mediated synaptic currents.
    Xie CW; Lewis DV
    J Neurophysiol; 1997 Aug; 78(2):759-66. PubMed ID: 9307110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The endogenous agonist quinolinic acid and the non endogenous homoquinolinic acid discriminate between NMDAR2 receptor subunits.
    de Carvalho LP; Bochet P; Rossier J
    Neurochem Int; 1996 Apr; 28(4):445-52. PubMed ID: 8740453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of NMDA receptors induces protein kinase A-mediated phosphorylation and degradation of matrin 3. Blocking these effects prevents NMDA-induced neuronal death.
    Giordano G; Sánchez-Pérez AM; Montoliu C; Berezney R; Malyavantham K; Costa LG; Calvete JJ; Felipo V
    J Neurochem; 2005 Aug; 94(3):808-18. PubMed ID: 16000164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterologous facilitation of G protein-activated K(+) channels by beta-adrenergic stimulation via cAMP-dependent protein kinase.
    Müllner C; Vorobiov D; Bera AK; Uezono Y; Yakubovich D; Frohnwieser-Steinecker B; Dascal N; Schreibmayer W
    J Gen Physiol; 2000 May; 115(5):547-58. PubMed ID: 10779313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of the alpha4 subunit of human alpha4beta2 nicotinic receptors: role of cAMP-dependent protein kinase (PKA) and protein kinase C (PKC).
    Pacheco MA; Pastoor TE; Wecker L
    Brain Res Mol Brain Res; 2003 May; 114(1):65-72. PubMed ID: 12782394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic AMP-dependent protein kinase and protein kinase C phosphorylate N-methyl-D-aspartate receptors at different sites.
    Leonard AS; Hell JW
    J Biol Chem; 1997 May; 272(18):12107-15. PubMed ID: 9115280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of NMDA receptor function by cyclic AMP in cerebellar neurones in culture.
    Llansola M; Sánchez-Pérez AM; Montoliu C; Felipo V
    J Neurochem; 2004 Nov; 91(3):591-9. PubMed ID: 15485490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cyclic AMP and analogues on neurogenic transmission in the rat tail artery.
    Ouedraogo S; Stoclet JC; Bucher B
    Br J Pharmacol; 1994 Feb; 111(2):625-31. PubMed ID: 8004406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Na+/glucose cotransporter expression by protein kinases in Xenopus laevis oocytes.
    Hirsch JR; Loo DD; Wright EM
    J Biol Chem; 1996 Jun; 271(25):14740-6. PubMed ID: 8663046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and pharmacological demonstration of a role for cyclic AMP-dependent protein kinase-mediated suppression of protein phosphatases in gating the expression of late LTP.
    Woo NH; Abel T; Nguyen PV
    Eur J Neurosci; 2002 Nov; 16(10):1871-6. PubMed ID: 12453050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors.
    Williams K
    Mol Pharmacol; 1993 Oct; 44(4):851-9. PubMed ID: 7901753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.