BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 10900195)

  • 1. Cdc42Hs and Rac1 GTPases induce the collapse of the vimentin intermediate filament network.
    Meriane M; Mary S; Comunale F; Vignal E; Fort P; Gauthier-Rouviére C
    J Biol Chem; 2000 Oct; 275(42):33046-52. PubMed ID: 10900195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RhoG GTPase controls a pathway that independently activates Rac1 and Cdc42Hs.
    Gauthier-Rouvière C; Vignal E; Mériane M; Roux P; Montcourier P; Fort P
    Mol Biol Cell; 1998 Jun; 9(6):1379-94. PubMed ID: 9614181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vimentin intermediate filament reorganization by Cdc42: involvement of PAK and p70 S6 kinase.
    Chan W; Kozma R; Yasui Y; Inagaki M; Leung T; Manser E; Lim L
    Eur J Cell Biol; 2002 Dec; 81(12):692-701. PubMed ID: 12553669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The small GTPases Cdc42Hs, Rac1 and RhoG delineate Raf-independent pathways that cooperate to transform NIH3T3 cells.
    Roux P; Gauthier-Rouvière C; Doucet-Brutin S; Fort P
    Curr Biol; 1997 Sep; 7(9):629-37. PubMed ID: 9285711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical activities of Rac1 and Cdc42Hs in skeletal myogenesis: antagonistic effects of JNK and p38 pathways.
    Meriane M; Roux P; Primig M; Fort P; Gauthier-Rouvière C
    Mol Biol Cell; 2000 Aug; 11(8):2513-28. PubMed ID: 10930450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TrioGEF1 controls Rac- and Cdc42-dependent cell structures through the direct activation of rhoG.
    Blangy A; Vignal E; Schmidt S; Debant A; Gauthier-Rouvière C; Fort P
    J Cell Sci; 2000 Feb; 113 ( Pt 4)():729-39. PubMed ID: 10652265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin.
    Govind S; Kozma R; Monfries C; Lim L; Ahmed S
    J Cell Biol; 2001 Feb; 152(3):579-94. PubMed ID: 11157984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transforming growth factor beta activates Rac1 and Cdc42Hs GTPases and the JNK pathway in skeletal muscle cells.
    Meriane M; Charrasse S; Comunale F; Gauthier-Rouvière C
    Biol Cell; 2002 Nov; 94(7-8):535-43. PubMed ID: 12566226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rac1 and RhoG promote cell survival by the activation of PI3K and Akt, independently of their ability to stimulate JNK and NF-kappaB.
    Murga C; Zohar M; Teramoto H; Gutkind JS
    Oncogene; 2002 Jan; 21(2):207-16. PubMed ID: 11803464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The GTPase-activating protein n-chimaerin cooperates with Rac1 and Cdc42Hs to induce the formation of lamellipodia and filopodia.
    Kozma R; Ahmed S; Best A; Lim L
    Mol Cell Biol; 1996 Sep; 16(9):5069-80. PubMed ID: 8756665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20.
    Martin GA; Bollag G; McCormick F; Abo A
    EMBO J; 1995 May; 14(9):1970-8. PubMed ID: 7744004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different roles of the small GTPases Rac1, Cdc42, and RhoG in CALEB/NGC-induced dendritic tree complexity.
    Schulz J; Franke K; Frick M; Schumacher S
    J Neurochem; 2016 Oct; 139(1):26-39. PubMed ID: 27412363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia.
    Abo A; Qu J; Cammarano MS; Dan C; Fritsch A; Baud V; Belisle B; Minden A
    EMBO J; 1998 Nov; 17(22):6527-40. PubMed ID: 9822598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid.
    Kozma R; Sarner S; Ahmed S; Lim L
    Mol Cell Biol; 1997 Mar; 17(3):1201-11. PubMed ID: 9032247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation and reorganization of vimentin by p21-activated kinase (PAK).
    Goto H; Tanabe K; Manser E; Lim L; Yasui Y; Inagaki M
    Genes Cells; 2002 Feb; 7(2):91-7. PubMed ID: 11895474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of anoikis by Cdc42 and Rac1.
    Cheng TL; Symons M; Jou TS
    Exp Cell Res; 2004 May; 295(2):497-511. PubMed ID: 15093747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role of STAT3 in Rho GTPase-regulated cell migration and proliferation.
    Debidda M; Wang L; Zang H; Poli V; Zheng Y
    J Biol Chem; 2005 Apr; 280(17):17275-85. PubMed ID: 15705584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypotonicity induces membrane protrusions and actin remodeling via activation of small GTPases Rac and Cdc42 in Rat-1 fibroblasts.
    Carton I; Hermans D; Eggermont J
    Am J Physiol Cell Physiol; 2003 Oct; 285(4):C935-44. PubMed ID: 12788692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Participation of small GTPases Rac1 and Cdc42Hs in myoblast transformation.
    Meriane M; Charrasse S; Comunale F; Méry A; Fort P; Roux P; Gauthier-Rouvière C
    Oncogene; 2002 Apr; 21(18):2901-7. PubMed ID: 11973651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of phospholipase C-beta2 by the Rho GTPases Cdc42Hs and Rac1.
    Illenberger D; Schwald F; Pimmer D; Binder W; Maier G; Dietrich A; Gierschik P
    EMBO J; 1998 Nov; 17(21):6241-9. PubMed ID: 9799233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.