These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 10900445)
1. The impact of covariate imbalance on the size of the logrank test in randomized clinical trials. Kinukawa N; Nakamura T; Akazawa K; Nose Y Stat Med; 2000 Aug; 19(15):1955-67. PubMed ID: 10900445 [TBL] [Abstract][Full Text] [Related]
2. Power of logrank test and Cox regression model in clinical trials with heterogeneous samples. Akazawa K; Nakamura T; Palesch Y Stat Med; 1997 Mar; 16(5):583-97. PubMed ID: 9089965 [TBL] [Abstract][Full Text] [Related]
3. Hazard ratio inference in stratified clinical trials with time-to-event endpoints and limited sample size. Xu R; Mehrotra DV; Shaw PA Pharm Stat; 2019 May; 18(3):366-376. PubMed ID: 30706642 [TBL] [Abstract][Full Text] [Related]
4. Nonparametric tests for stratum effects in the Cox model. Sun J; Yang I Lifetime Data Anal; 2000 Dec; 6(4):321-30. PubMed ID: 11190602 [TBL] [Abstract][Full Text] [Related]
5. Interim analysis on survival data: its potential bias and how to repair it. van Houwelingen HC; van de Velde CJ; Stijnen T Stat Med; 2005 Sep; 24(18):2823-35. PubMed ID: 16025546 [TBL] [Abstract][Full Text] [Related]
6. Baseline characteristics and statistical power in randomized controlled trials: selection, prognostic targeting, or covariate adjustment? Roozenbeek B; Maas AI; Lingsma HF; Butcher I; Lu J; Marmarou A; McHugh GS; Weir J; Murray GD; Steyerberg EW; Crit Care Med; 2009 Oct; 37(10):2683-90. PubMed ID: 19885979 [TBL] [Abstract][Full Text] [Related]
7. Increasing power in randomized trials with right censored outcomes through covariate adjustment. Moore KL; van der Laan MJ J Biopharm Stat; 2009 Nov; 19(6):1099-131. PubMed ID: 20183467 [TBL] [Abstract][Full Text] [Related]
8. A simulation study comparing the power of nine tests of the treatment effect in randomized controlled trials with a time-to-event outcome. Royston P; B Parmar MK Trials; 2020 Apr; 21(1):315. PubMed ID: 32252820 [TBL] [Abstract][Full Text] [Related]
9. Simulation program for estimating statistical power of Cox's proportional hazards model assuming no specific distribution for the survival time. Akazawa K; Nakamura T; Moriguchi S; Shimada M; Nose Y Comput Methods Programs Biomed; 1991 Jul; 35(3):203-12. PubMed ID: 1935013 [TBL] [Abstract][Full Text] [Related]
10. Impact of baseline covariate imbalance on bias in treatment effect estimation in cluster randomized trials: Race as an example. Yang S; Starks MA; Hernandez AF; Turner EL; Califf RM; O'Connor CM; Mentz RJ; Roy Choudhury K Contemp Clin Trials; 2020 Jan; 88():105775. PubMed ID: 31228563 [TBL] [Abstract][Full Text] [Related]
11. Nonparametric analysis of covariance for hypothesis testing with logrank and Wilcoxon scores and survival-rate estimation in a randomized clinical trial. Tangen CM; Koch GG J Biopharm Stat; 1999 May; 9(2):307-38. PubMed ID: 10379696 [TBL] [Abstract][Full Text] [Related]
12. Measuring continuous baseline covariate imbalances in clinical trial data. Ciolino JD; Martin RH; Zhao W; Hill MD; Jauch EC; Palesch YY Stat Methods Med Res; 2015 Apr; 24(2):255-72. PubMed ID: 21865270 [TBL] [Abstract][Full Text] [Related]
13. Sample size and power for a logrank test and Cox proportional hazards model with multiple groups and strata, or a quantitative covariate with multiple strata. Lachin JM Stat Med; 2013 Nov; 32(25):4413-25. PubMed ID: 23670965 [TBL] [Abstract][Full Text] [Related]
14. An omnibus test for several hazard alternatives in prevention randomized controlled clinical trials. Garès V; Andrieu S; Dupuy JF; Savy N Stat Med; 2015 Feb; 34(4):541-57. PubMed ID: 25388274 [TBL] [Abstract][Full Text] [Related]
15. An approach to trial design and analysis in the era of non-proportional hazards of the treatment effect. Royston P; Parmar MK Trials; 2014 Aug; 15():314. PubMed ID: 25098243 [TBL] [Abstract][Full Text] [Related]
16. Influence of trial duration on the bias of the estimated treatment effect in clinical trials when individual heterogeneity is ignored. Cécilia-Joseph E; Auvert B; Broët P; Moreau T Biom J; 2015 May; 57(3):371-83. PubMed ID: 25597640 [TBL] [Abstract][Full Text] [Related]
17. Survival analysis using a 5-step stratified testing and amalgamation routine (5-STAR) in randomized clinical trials. Mehrotra DV; Marceau West R Stat Med; 2020 Dec; 39(30):4724-4744. PubMed ID: 32954531 [TBL] [Abstract][Full Text] [Related]
18. Sample size calculation for the augmented logrank test in randomized clinical trials. Hattori S; Komukai S; Friede T Stat Med; 2022 Jun; 41(14):2627-2644. PubMed ID: 35319100 [TBL] [Abstract][Full Text] [Related]
19. How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level. Moerbeek M; van Schie S BMC Med Res Methodol; 2016 Jul; 16():79. PubMed ID: 27401771 [TBL] [Abstract][Full Text] [Related]
20. Stratified experiments reexamined with emphasis on multicenter trials. Ganju J; Mehrotra DV Control Clin Trials; 2003 Apr; 24(2):167-81. PubMed ID: 12689738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]