BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10901200)

  • 1. Cartilage turnover in embryonic chick tibial explant cultures.
    Orth MW; Peters TL; Chlebek-Brown KA
    Poult Sci; 2000 Jul; 79(7):990-3. PubMed ID: 10901200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical characterization of cartilage degradation in embryonic chick tibial explant cultures.
    Orth MW; Fenton JI; Chlebek-Brown KA
    Poult Sci; 1999 Nov; 78(11):1596-600. PubMed ID: 10560834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progression and recapitulation of the chondrocyte differentiation program: cartilage matrix protein is a marker for cartilage maturation.
    Chen Q; Johnson DM; Haudenschild DR; Goetinck PF
    Dev Biol; 1995 Nov; 172(1):293-306. PubMed ID: 7589809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetracycline derivatives inhibit cartilage degradation in cultured embryonic chick tibiae.
    Orth MW; Chlebek KA; Cole AA; Schmid TM
    Res Vet Sci; 1997; 63(1):11-4. PubMed ID: 9368950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of bone and marrow on cartilage hypertrophy and degradation during 30-day serum-free culture of the embryonic chick tibia.
    Cole AA; Luchene LJ; Linsenmayer TF; Schmid TM
    Dev Dyn; 1992 Mar; 193(3):277-85. PubMed ID: 1600246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of growth region cartilage proliferation and differentiation by perichondrium.
    Long F; Linsenmayer TF
    Development; 1998 Mar; 125(6):1067-73. PubMed ID: 9463353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chondrocytes isolated from tibial dyschondroplasia lesions and articular cartilage revert to a growth plate-like phenotype when cultured in vitro.
    Wu LN; Ishikawa Y; Genge BR; Wuthier RE
    J Cell Physiol; 2005 Jan; 202(1):167-77. PubMed ID: 15389532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of culture conditions and exposure to catabolic stimulators (IL-1 and retinoic acid) on the expression of matrix metalloproteinases (MMPs) and disintegrin metalloproteinases (ADAMs) by articular cartilage chondrocytes.
    Flannery CR; Little CB; Caterson B; Hughes CE
    Matrix Biol; 1999 Jun; 18(3):225-37. PubMed ID: 10429942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes.
    Basso N; Heersche JN
    Bone; 2006 Oct; 39(4):807-14. PubMed ID: 16765658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 8-Nitro-cGMP promotes bone growth through expansion of growth plate cartilage.
    Hoshino M; Kaneko K; Miyamoto Y; Yoshimura K; Suzuki D; Akaike T; Sawa T; Ida T; Fujii S; Ihara H; Tanaka J; Tsukuura R; Chikazu D; Mishima K; Baba K; Kamijo R
    Free Radic Biol Med; 2017 Sep; 110():63-71. PubMed ID: 28559051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic kinetics of proteoglycans by embryonic chick sternal cartilage in culture.
    Liu H; Bee JA; Lees P
    Arch Biochem Biophys; 1999 Jul; 367(2):225-32. PubMed ID: 10395738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type X collagen degradation in long-term serum-free culture of the embryonic chick tibia following production of active collagenase and gelatinase.
    Cole AA; Boyd T; Luchene L; Kuettner KE; Schmid TM
    Dev Biol; 1993 Oct; 159(2):528-34. PubMed ID: 8405676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and integration of neocartilage with native cartilage in vitro.
    Zhang Z; McCaffery JM; Spencer RG; Francomano CA
    J Orthop Res; 2005 Mar; 23(2):433-9. PubMed ID: 15734259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulators of chondrocyte differentiation in tibial dyschondroplasia: an in vivo and in vitro study.
    Farquharson C; Berry JL; Mawer EB; Seawright E; Whitehead CC
    Bone; 1995 Sep; 17(3):279-86. PubMed ID: 8541142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase 2 enzyme inducer sulphoraphane blocks prostaglandin and nitric oxide synthesis in human articular chondrocytes and inhibits cartilage matrix degradation.
    Kim HA; Yeo Y; Jung HA; Jung YO; Park SJ; Kim SJ
    Rheumatology (Oxford); 2012 Jun; 51(6):1006-16. PubMed ID: 22332123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of growth factors and interleukin-1 alpha on proteoglycan and type II collagen turnover in bovine nasal and articular chondrocyte pellet cultures.
    Xu C; Oyajobi BO; Frazer A; Kozaci LD; Russell RG; Hollander AP
    Endocrinology; 1996 Aug; 137(8):3557-65. PubMed ID: 8754787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parathyroid hormone-related protein regulates proliferation of condylar hypertrophic chondrocytes.
    Suda N; Shibata S; Yamazaki K; Kuroda T; Senior PV; Beck F; Hammond VE
    J Bone Miner Res; 1999 Nov; 14(11):1838-47. PubMed ID: 10571683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ERG (ets related gene) in cartilage development.
    Iwamoto M; Higuchi Y; Enomoto-Iwamoto M; Kurisu K; Koyama E; Yeh H; Rosenbloom J; Pacifici M
    Osteoarthritis Cartilage; 2001; 9 Suppl A():S41-7. PubMed ID: 11680687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parathyroid hormone [PTH(1-34)] and parathyroid hormone-related protein [PTHrP(1-34)] promote reversion of hypertrophic chondrocytes to a prehypertrophic proliferating phenotype and prevent terminal differentiation of osteoblast-like cells.
    Zerega B; Cermelli S; Bianco P; Cancedda R; Cancedda FD
    J Bone Miner Res; 1999 Aug; 14(8):1281-9. PubMed ID: 10457260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional differences between growth plate apoptotic bodies and matrix vesicles.
    Kirsch T; Wang W; Pfander D
    J Bone Miner Res; 2003 Oct; 18(10):1872-81. PubMed ID: 14584898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.