These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 10902152)

  • 1. Enzyme evolution explained (sort of).
    Dean AM; Golding GB
    Pac Symp Biocomput; 2000; ():6-17. PubMed ID: 10902152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytosolic isocitrate dehydrogenase in humans, mice, and voles and phylogenetic analysis of the enzyme family.
    Nekrutenko A; Hillis DM; Patton JC; Bradley RD; Baker RJ
    Mol Biol Evol; 1998 Dec; 15(12):1674-84. PubMed ID: 9866202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermostability of ancestral mutants of Caldococcus noboribetus isocitrate dehydrogenase.
    Iwabata H; Watanabe K; Ohkuri T; Yokobori S; Yamagishi A
    FEMS Microbiol Lett; 2005 Feb; 243(2):393-8. PubMed ID: 15686840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of phosphorylation sites for NADP-specific isocitrate dehydrogenase from mycobacterium tuberculosis.
    Vinekar R; Ghosh I
    J Biomol Struct Dyn; 2009 Jun; 26(6):741-54. PubMed ID: 19385702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Access to phosphorylation in isocitrate dehydrogenase may occur by domain shifting.
    Finer-Moore J; Tsutakawa SE; Cherbavaz DR; LaPorte DC; Koshland DE; Stroud RM
    Biochemistry; 1997 Nov; 36(45):13890-6. PubMed ID: 9374867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate-free structure of a monomeric NADP isocitrate dehydrogenase: an open conformation phylogenetic relationship of isocitrate dehydrogenase.
    Imabayashi F; Aich S; Prasad L; Delbaere LT
    Proteins; 2006 Apr; 63(1):100-12. PubMed ID: 16416443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of alpha-Asp181, beta-Asp192, and gamma-Asp190 in the distinctive subunits of human NAD-specific isocitrate dehydrogenase.
    Bzymek KP; Colman RF
    Biochemistry; 2007 May; 46(18):5391-7. PubMed ID: 17432878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase.
    Lee P; Colman RF
    Arch Biochem Biophys; 2002 May; 401(1):81-90. PubMed ID: 12054490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein engineering reveals ancient adaptive replacements in isocitrate dehydrogenase.
    Dean AM; Golding GB
    Proc Natl Acad Sci U S A; 1997 Apr; 94(7):3104-9. PubMed ID: 9096353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General heterotachy and distance method adjustments.
    Wu J; Susko E
    Mol Biol Evol; 2009 Dec; 26(12):2689-97. PubMed ID: 19687305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutagenesis and Laue structures of enzyme intermediates: isocitrate dehydrogenase.
    Bolduc JM; Dyer DH; Scott WG; Singer P; Sweet RM; Koshland DE; Stoddard BL
    Science; 1995 Jun; 268(5215):1312-8. PubMed ID: 7761851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the monomeric isocitrate dehydrogenase: evidence of a protein monomerization by a domain duplication.
    Yasutake Y; Watanabe S; Yao M; Takada Y; Fukunaga N; Tanaka I
    Structure; 2002 Dec; 10(12):1637-48. PubMed ID: 12467571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of a highly NADP+-specific isocitrate dehydrogenase.
    Sidhu NS; Delbaere LT; Sheldrick GM
    Acta Crystallogr D Biol Crystallogr; 2011 Oct; 67(Pt 10):856-69. PubMed ID: 21931217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure studies of NADP+ dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain.
    Kumar SM; Pampa KJ; Manjula M; Abdoh MM; Kunishima N; Lokanath NK
    Biochem Biophys Res Commun; 2014 Jun; 449(1):107-13. PubMed ID: 24832735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric dynamic coupling promotes alternative evolutionary pathways in an enzyme dimer.
    Ambrus V; Hoffka G; Fuxreiter M
    Sci Rep; 2020 Nov; 10(1):18866. PubMed ID: 33139795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational analysis of the catalytic residues lysine 230 and tyrosine 160 in the NADP(+)-dependent isocitrate dehydrogenase from Escherichia coli.
    Lee ME; Dyer DH; Klein OD; Bolduc JM; Stoddard BL; Koshland DE
    Biochemistry; 1995 Jan; 34(1):378-84. PubMed ID: 7819221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of oncogenic mutation of isocitrate dehydrogenase 1.
    Rajendran V
    Mol Biosyst; 2016 Jun; 12(7):2276-87. PubMed ID: 27194485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix: X-ray structure analysis of a ternary enzyme-substrate complex and thermal stability.
    Karlström M; Stokke R; Steen IH; Birkeland NK; Ladenstein R
    J Mol Biol; 2005 Jan; 345(3):559-77. PubMed ID: 15581899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative efficiencies of the maximum likelihood, maximum parsimony, and neighbor-joining methods for estimating protein phylogeny.
    Hasegawa M; Fujiwara M
    Mol Phylogenet Evol; 1993 Mar; 2(1):1-5. PubMed ID: 8081543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum likelihood outperforms maximum parsimony even when evolutionary rates are heterotachous.
    Gadagkar SR; Kumar S
    Mol Biol Evol; 2005 Nov; 22(11):2139-41. PubMed ID: 16014870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.