BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 10902205)

  • 1. Library design and virtual screening using multiple 4-point pharmacophore fingerprints.
    Mason JS; Cheney DL
    Pac Symp Biocomput; 2000; ():576-87. PubMed ID: 10902205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Library design using BCUT chemistry-space descriptors and multiple four-point pharmacophore fingerprints: simultaneous optimization and structure-based diversity.
    Mason JS; Beno BR
    J Mol Graph Model; 2000; 18(4-5):438-51, 538. PubMed ID: 11143561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New 4-point pharmacophore method for molecular similarity and diversity applications: overview of the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures.
    Mason JS; Morize I; Menard PR; Cheney DL; Hulme C; Labaudiniere RF
    J Med Chem; 1999 Aug; 42(17):3251-64. PubMed ID: 10464012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trends in virtual combinatorial library design.
    Schneider G
    Curr Med Chem; 2002 Dec; 9(23):2095-101. PubMed ID: 12470249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3-D pharmacophores in drug discovery.
    Mason JS; Good AC; Martin EJ
    Curr Pharm Des; 2001 May; 7(7):567-97. PubMed ID: 11375769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of catalyst pharmacophore models for screening of large combinatorial libraries.
    Hecker EA; Duraiswami C; Andrea TA; Diller DJ
    J Chem Inf Comput Sci; 2002; 42(5):1204-11. PubMed ID: 12377010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-receptor 3-D similarity studies using multiple 4-point pharmacophores.
    Mason JS; Cheney DL
    Pac Symp Biocomput; 1999; ():456-67. PubMed ID: 10380219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel 2D fingerprints for ligand-based virtual screening.
    Ewing T; Baber JC; Feher M
    J Chem Inf Model; 2006; 46(6):2423-31. PubMed ID: 17125184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of pharmacophore information from high-throughput screens.
    Hopfinger AJ; Duca JS
    Curr Opin Biotechnol; 2000 Feb; 11(1):97-103. PubMed ID: 10679338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and virtual screening of target libraries.
    Rognan D
    J Physiol Paris; 2006; 99(2-3):232-44. PubMed ID: 16459061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel technologies for virtual screening.
    Lengauer T; Lemmen C; Rarey M; Zimmermann M
    Drug Discov Today; 2004 Jan; 9(1):27-34. PubMed ID: 14761803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-Based Virtual Screening.
    Li Q; Shah S
    Methods Mol Biol; 2017; 1558():111-124. PubMed ID: 28150235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and screening of a polyketide virtual library for drug leads against a motilide pharmacophore.
    Siani MA; Skillman AG; Carreras CW; Ashley G; Kuntz ID; Santi DV
    J Mol Graph Model; 2000; 18(4-5):497-511, 539-40. PubMed ID: 11143565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D virtual screening of large combinatorial spaces.
    Muegge I; Zhang Q
    Methods; 2015 Jan; 71():14-20. PubMed ID: 24993648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein tyrosine phosphatases: Ligand interaction analysis and optimisation of virtual screening.
    Ghattas MA; Atatreh N; Bichenkova EV; Bryce RA
    J Mol Graph Model; 2014 Jul; 52():114-23. PubMed ID: 25038507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational protein-ligand docking and virtual drug screening with the AutoDock suite.
    Forli S; Huey R; Pique ME; Sanner MF; Goodsell DS; Olson AJ
    Nat Protoc; 2016 May; 11(5):905-19. PubMed ID: 27077332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting de novo drug design: receptor based pharmacophore screening.
    Amaravadhi H; Baek K; Yoon HS
    Curr Top Med Chem; 2014; 14(16):1890-8. PubMed ID: 25262804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput structure-based pharmacophore modelling as a basis for successful parallel virtual screening.
    Steindl TM; Schuster D; Wolber G; Laggner C; Langer T
    J Comput Aided Mol Des; 2006 Dec; 20(12):703-15. PubMed ID: 17009092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacophore fingerprinting. 1. Application to QSAR and focused library design.
    McGregor MJ; Muskal SM
    J Chem Inf Comput Sci; 1999; 39(3):569-74. PubMed ID: 10361729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All in One: Cavity Detection, Druggability Estimate, Cavity-Based Pharmacophore Perception, and Virtual Screening.
    Tran-Nguyen VK; Da Silva F; Bret G; Rognan D
    J Chem Inf Model; 2019 Jan; 59(1):573-585. PubMed ID: 30563339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.