These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. [On the functional anatomy of the corpora pedunculata in insects (author's transl)]. Schürmann FW Exp Brain Res; 1974 Feb; 19(4):406-32. PubMed ID: 4827867 [No Abstract] [Full Text] [Related]
4. Adaptations of arthropoda to arid environments. Cloudsley-Thompson JL Annu Rev Entomol; 1975; 20():261-83. PubMed ID: 1090239 [No Abstract] [Full Text] [Related]
5. Neuro-hormonal control of sexual behavior in insects. Barth RH; Lester LJ Annu Rev Entomol; 1973; 18():445-72. PubMed ID: 4218470 [No Abstract] [Full Text] [Related]
6. Insect societies and the social brain. Farris SM Curr Opin Insect Sci; 2016 Jun; 15():1-8. PubMed ID: 27436726 [TBL] [Abstract][Full Text] [Related]
7. Dual olfactory pathway in Hymenoptera: evolutionary insights from comparative studies. Rössler W; Zube C Arthropod Struct Dev; 2011 Jul; 40(4):349-57. PubMed ID: 21167312 [TBL] [Abstract][Full Text] [Related]
8. Invertebrate neurobiology: brain control of insect walking. Zill S Curr Biol; 2010 May; 20(10):R438-40. PubMed ID: 20504750 [TBL] [Abstract][Full Text] [Related]
9. Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Labhart T; Meyer EP Microsc Res Tech; 1999 Dec; 47(6):368-79. PubMed ID: 10607378 [TBL] [Abstract][Full Text] [Related]
10. [Achievement of high frequencies of motor activity in insects]. Sviderskiĭ VL Usp Fiziol Nauk; 1971; 2(3):105-22. PubMed ID: 4949778 [No Abstract] [Full Text] [Related]
12. Impact of descending brain neurons on the control of stridulation, walking, and flight in orthoptera. Heinrich R Microsc Res Tech; 2002 Feb; 56(4):292-301. PubMed ID: 11877804 [TBL] [Abstract][Full Text] [Related]
13. Brains of ants and elephants. Gregory R Perception; 1997; 26(3):249-52. PubMed ID: 9282222 [No Abstract] [Full Text] [Related]
14. The social clock of the honeybee. Bloch G J Biol Rhythms; 2010 Oct; 25(5):307-17. PubMed ID: 20876811 [TBL] [Abstract][Full Text] [Related]
15. Memory use in insect visual navigation. Collett TS; Collett M Nat Rev Neurosci; 2002 Jul; 3(7):542-52. PubMed ID: 12094210 [TBL] [Abstract][Full Text] [Related]
16. Circadian rhythm for experimentally-induced aggressive behavior in mice. Sofia RD; Salama AI Life Sci; 1970 Mar; 9(6):331-8. PubMed ID: 5462761 [No Abstract] [Full Text] [Related]
17. The colony environment, but not direct contact with conspecifics, influences the development of circadian rhythms in honey bees. Eban-Rothschild A; Shemesh Y; Bloch G J Biol Rhythms; 2012 Jun; 27(3):217-25. PubMed ID: 22653890 [TBL] [Abstract][Full Text] [Related]
18. The Anopheles genome and comparative insect genomics. Kaufman TC; Severson DW; Robinson GE Science; 2002 Oct; 298(5591):97-8. PubMed ID: 12364783 [TBL] [Abstract][Full Text] [Related]
19. Visuomotor control: not so simple insect locomotion. Ritzmann RE Curr Biol; 2010 Jan; 20(1):R18-9. PubMed ID: 20152137 [TBL] [Abstract][Full Text] [Related]
20. The role of serotonin in regulation the circadian rhythm of locomotor activity in the cricket (Acheta domesticus L.) II. Distribution of serotonin and variations in different brain structure. Muszyńska-Pytel M; Cymboroski B Comp Biochem Physiol C Comp Pharmacol; 1978; 59(1):17-20. PubMed ID: 24517 [No Abstract] [Full Text] [Related] [Next] [New Search]