BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

13304 related articles for article (PubMed ID: 10902554)

  • 1. An analysis of the relationship between radiosensitivity and volume effects in tumor control probability modeling.
    Buffa FM; Fenwick JD; Nahum AE
    Med Phys; 2000 Jun; 27(6):1258-65. PubMed ID: 10902554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the radiation control probability of heterogeneous tumour ensembles: data analysis and parameter estimation using a closed-form expression.
    Fenwick JD
    Phys Med Biol; 1998 Aug; 43(8):2159-78. PubMed ID: 9725596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimum parameters in a model for tumour control probability, including interpatient heterogeneity: evaluation of the log-normal distribution.
    Keall PJ; Webb S
    Phys Med Biol; 2007 Jan; 52(1):291-302. PubMed ID: 17183142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of hypofractionation on simultaneous dose-boosting to hypoxic tumor subvolumes.
    Ruggieri R; Nahum AE
    Med Phys; 2006 Nov; 33(11):4044-55. PubMed ID: 17153384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors.
    Espinoza I; Peschke P; Karger CP
    Med Phys; 2015 Jan; 42(1):90-102. PubMed ID: 25563250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective boosting of tumor subvolumes.
    Tomé WA; Fowler JF
    Int J Radiat Oncol Biol Phys; 2000 Sep; 48(2):593-9. PubMed ID: 10974480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On differences in radiosensitivity estimation: TCP experiments versus survival curves. A theoretical study.
    Stavrev P; Stavreva N; Ruggieri R; Nahum A
    Phys Med Biol; 2015 Aug; 60(15):N293-9. PubMed ID: 26215150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the effect of clonogen resensitization on the tumor response to fractionated external radiotherapy.
    Stavreva NA; Warkentin B; Stavrev PV; Fallone BG
    Med Phys; 2005 Mar; 32(3):720-5. PubMed ID: 15839343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimum parameters in a model for tumour control probability including interpatient heterogeneity.
    Webb S
    Phys Med Biol; 1994 Nov; 39(11):1895-914. PubMed ID: 15559999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the surviving fraction in irradiated multicellular tumour spheroids: calculation of overall radiosensitivity parameters, influence of hypoxia and volume effects.
    Horas JA; Olguin OR; Rizzotto MG
    Phys Med Biol; 2005 Apr; 50(8):1689-701. PubMed ID: 15815090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of a hypoxia based tumor control model with observed local control rates in nasopharyngeal carcinoma treated with chemoradiotherapy.
    Avanzo M; Stancanello J; Franchin G; Sartor G; Jena R; Drigo A; Dassie A; Gigante M; Capra E
    Med Phys; 2010 Apr; 37(4):1533-44. PubMed ID: 20443474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive value of modelled tumour control probability based on individual measurements of in vitro radiosensitivity and potential doubling time.
    Hedman M; Björk-Eriksson T; Brodin O; Toma-Dasu I
    Br J Radiol; 2013 May; 86(1025):20130015. PubMed ID: 23479396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation damage, repopulation and cell recovery analysis of in vitro tumour cell megacolony culture data using a non-Poissonian cell repopulation TCP model.
    Stavrev P; Weldon M; Warkentin B; Stavreva N; Fallone BG
    Phys Med Biol; 2005 Jul; 50(13):3053-61. PubMed ID: 15972980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose, volume, and tumor-control predictions in radiotherapy.
    Brenner DJ
    Int J Radiat Oncol Biol Phys; 1993 Apr; 26(1):171-9. PubMed ID: 8482624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiosensitivity uncertainty evaluation for the in vitro biophysical modeling of EMT6 cells.
    Oita M; Uto Y; Tominaga M; Sasaki M; Hara Y; Kishi T; Hori H
    Anticancer Res; 2014 Aug; 34(8):4621-6. PubMed ID: 25075109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling the effect of spread in radiosensitivity parameters and repopulation rate on the probability of tumour control.
    Stavreva N; Stavrev P; Balabanova A; Nahum A; Ruggieri R; Pressyanov D
    Phys Med; 2019 Jul; 63():79-86. PubMed ID: 31221413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of oxygen on intrinsic radiation sensitivity: A test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parameters.
    Carlson DJ; Stewart RD; Semenenko VA
    Med Phys; 2006 Sep; 33(9):3105-15. PubMed ID: 17022202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined effect of heterogeneous target dose and heterogeneous radiosensitivity on tumor control probability for different fractionation regimens.
    Kuperman VY; Lubich LM; Spradlin GS
    Phys Med; 2022 Mar; 95():140-147. PubMed ID: 35176720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the effect of temporal variations in PO2 on tumor radiosensitivity.
    Kirkpatrick JP; Cárdenas-Navia LI; Dewhirst MW
    Int J Radiat Oncol Biol Phys; 2004 Jul; 59(3):822-33. PubMed ID: 15183486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simulation framework for modeling tumor control probability in breast conserving therapy.
    Chen W; Gilhuijs K; Stroom J; Bartelink H; Sonke JJ
    Radiother Oncol; 2014 May; 111(2):289-95. PubMed ID: 24746572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 666.