BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10902560)

  • 1. Stereomammography: evaluation of depth perception using a virtual 3D cursor.
    Goodsitt MM; Chan HP; Hadjiiski L
    Med Phys; 2000 Jun; 27(6):1305-10. PubMed ID: 10902560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of stereo shift angle, geometric magnification and display zoom on depth measurements in digital stereomammography.
    Goodsitt MM; Chan HP; Darner KL; Hadjiiski LM
    Med Phys; 2002 Nov; 29(11):2725-34. PubMed ID: 12462741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of magnification and zooming on depth perception in digital stereomammography: an observer performance study.
    Chan HP; Goodsitt MM; Hadjiiski LM; Bailey JE; Klein K; Darner KL; Sahiner B
    Phys Med Biol; 2003 Nov; 48(22):3721-34. PubMed ID: 14680269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ROC study of the effect of stereoscopic imaging on assessment of breast lesions.
    Chan HP; Goodsitt MM; Helvie MA; Hadjiiski LM; Lydick JT; Roubidoux MA; Bailey JE; Nees A; Blane CE; Sahiner B
    Med Phys; 2005 Apr; 32(4):1001-9. PubMed ID: 15895583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An observer study comparing spot imaging regions selected by radiologists and a computer for an automated stereo spot mammography technique.
    Goodsitt MM; Chan HP; Lydick JT; Gandra CR; Chen NG; Helvie MA; Bailey JE; Roubidoux MA; Paramagul C; Blane CE; Sahiner B; Petrick NA
    Med Phys; 2004 Jun; 31(6):1558-67. PubMed ID: 15259660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of full-field digital mammography to screen-film mammography with respect to contrast and spatial resolution in tissue equivalent breast phantoms.
    Kuzmiak CM; Pisano ED; Cole EB; Zeng D; Burns CB; Roberto C; Pavic D; Lee Y; Seo BK; Koomen M; Washburn D
    Med Phys; 2005 Oct; 32(10):3144-50. PubMed ID: 16279068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications.
    Chen Y; Lo JY; Dobbins JT
    Med Phys; 2007 Oct; 34(10):3885-92. PubMed ID: 17985634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer analysis of mammography phantom images (CAMPI): an application to the measurement of microcalcification image quality of directly acquired digital images.
    Chakraborty DP
    Med Phys; 1997 Aug; 24(8):1269-77. PubMed ID: 9284251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative performance of multiview stereoscopic and mammographic display modalities for breast lesion detection.
    Webb LJ; Samei E; Lo JY; Baker JA; Ghate SV; Kim C; Soo MS; Walsh R
    Med Phys; 2011 Apr; 38(4):1972-80. PubMed ID: 21626930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observer performance and dose efficiency of mammographic scanning equalization radiography.
    Sabol JM; Soutar IC; Plewes DB
    Med Phys; 1993; 20(5):1517-25. PubMed ID: 8289736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.
    Gong X; Glick SJ; Liu B; Vedula AA; Thacker S
    Med Phys; 2006 Apr; 33(4):1041-52. PubMed ID: 16696481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the noise variance of a digital mammography system.
    Burgess A
    Med Phys; 2004 Jul; 31(7):1987-95. PubMed ID: 15305451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and evaluation of an external filter technique for exposure equalization in mammography.
    Keshavmurthy SP; Goodsitt MM; Chan HP; Helvie MA; Christodoulou E
    Med Phys; 1999 Aug; 26(8):1655-69. PubMed ID: 10501065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing X-ray images to eliminate irrelevant structures that mask important features.
    Dong Z; Ledley RS
    Comput Med Imaging Graph; 2004 Sep; 28(6):321-31. PubMed ID: 15294310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cone-beam volume CT breast imaging: feasibility study.
    Chen B; Ning R
    Med Phys; 2002 May; 29(5):755-70. PubMed ID: 12033572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An anatomically oriented breast coordinate system for mammogram analysis.
    Brandt SS; Karemore G; Karssemeijer N; Nielsen M
    IEEE Trans Med Imaging; 2011 Oct; 30(10):1841-51. PubMed ID: 21609879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of breast cancer by soft-copy reading of digital mammograms: comparison between a routine image-processing parameter and high-contrast parameters.
    Kamitani T; Yabuuchi H; Soeda H; Matsuo Y; Okafuji T; Sakai S; Setoguchi T; Hatakenaka M; Ishii N; Honda H
    Acta Radiol; 2010 Feb; 51(1):15-20. PubMed ID: 19922328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical description of the high and low contrast behavior of a scan-rotate geometry for equalization mammography.
    Sabol JM; Plewes DB
    Med Phys; 1996 Jun; 23(6):887-98. PubMed ID: 8798174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D visualization and stereographic techniques for medical research and education.
    Rydmark M; Kling-Petersen T; Pascher R; Philip F
    Stud Health Technol Inform; 2001; 81():434-9. PubMed ID: 11317785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated analysis of the American College of Radiology mammographic accreditation phantom images.
    Brooks KW; Trueblood JH; Kearfott KJ; Lawton DT
    Med Phys; 1997 May; 24(5):709-23. PubMed ID: 9167162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.