These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10903031)

  • 21. Cyclic (1----2)-beta-D-glucans (cyclosophorans) produced by Agrobacterium and Rhizobium species.
    Hisamatsu M
    Carbohydr Res; 1992 Jul; 231():137-46. PubMed ID: 1394310
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solubility enhancement of α-naphthoflavone by synthesized hydroxypropyl cyclic-(1→2)-β-D-glucans (cyclosophoroases).
    Piao J; Jang A; Choi Y; Tahir MN; Kim Y; Park S; Cho E; Jung S
    Carbohydr Polym; 2014 Jan; 101():733-40. PubMed ID: 24299833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A conformational model for cyclic beta-(1-->2)-linked glucans based on NMR analysis of the beta-glucans produced by Xanthomonas campestris.
    York WS
    Carbohydr Res; 1995 Dec; 278(2):205-25. PubMed ID: 8590443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformation, flexibility and hydration of hyaluronic acid by molecular dynamics simulations.
    Taweechat P; Pandey RB; Sompornpisut P
    Carbohydr Res; 2020 Jul; 493():108026. PubMed ID: 32442703
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glucose orientation and dynamics in alpha-, beta-, and gamma-cyclodextrins.
    Naidoo KJ; Gamieldien MR; Chen JY; Widmalm G; Maliniak A
    J Phys Chem B; 2008 Nov; 112(47):15151-7. PubMed ID: 18975890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chiral recognition based on enantioselective interactions of propranolol enantiomers with cyclosophoraoses isolated from Rhizobium meliloti.
    Lee S; Choi Y; Lee S; Jeong K; Jung S
    Chirality; 2004 Mar; 16(3):204-10. PubMed ID: 14770418
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of the hexopyranose ring geometry on the conformation of glycosidic linkages investigated using molecular dynamics simulations.
    Plazinski W; Drach M
    Carbohydr Res; 2015 Oct; 415():17-27. PubMed ID: 26279522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conformational free energy maps for globobiose (alpha-D-Galp-(1-->4)-beta-D-Galp) in implicit and explicit aqueous solution.
    Kuttel MM
    Carbohydr Res; 2008 May; 343(6):1091-8. PubMed ID: 18291354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformation and dynamics of a cyclic (1-->2)-beta-D-glucan.
    André I; Mazeau K; Taravel FR; Tvaroska I
    Int J Biol Macromol; 1995 Jun; 17(3-4):189-98. PubMed ID: 7577817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformational investigation of a cyclic enterobacterial common antigen employing NMR spectroscopy and molecular dynamics simulations.
    Staaf M; Höög C; Stevensson B; Maliniak A; Widmalm G
    Biochemistry; 2001 Mar; 40(12):3623-8. PubMed ID: 11297429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational analysis and molecular dynamics simulation of alpha-(1-->2) and alpha-(1-->3) linked rhamnose oligosaccharides: reconciliation with optical rotation and NMR experiments.
    Hardy BJ; Bystricky S; Kovac P; Widmalm G
    Biopolymers; 1997 Jan; 41(1):83-96. PubMed ID: 8986121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of the conformational flexibility of the mycodextran under external forces.
    Brzyska A; Woliński K
    Biopolymers; 2020 Aug; 111(8):e23357. PubMed ID: 32369625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of methylation on the stability and solvation free energy of amylose and cellulose fragments: a molecular dynamics study.
    Yu H; Amann M; Hansson T; Köhler J; Wich G; van Gunsteren WF
    Carbohydr Res; 2004 Jul; 339(10):1697-709. PubMed ID: 15220079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preferred conformation of the glycosidic linkage of methyl-beta-mannose.
    Coskuner O
    J Chem Phys; 2007 Jul; 127(1):015101. PubMed ID: 17627368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulations of the static and dynamic molecular conformations of xyloglucan. The role of the fucosylated sidechain in surface-specific sidechain folding.
    Levy S; York WS; Stuike-Prill R; Meyer B; Staehelin LA
    Plant J; 1991 Sep; 1(2):195-215. PubMed ID: 1844884
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DFTMD studies of β-cellobiose: conformational preference using implicit solvent.
    Momany FA; Schnupf U
    Carbohydr Res; 2011 Apr; 346(5):619-30. PubMed ID: 21333280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ab initio computational study of beta-cellobiose conformers using B3LYP/6-311++G**.
    Strati GL; Willett JL; Momany FA
    Carbohydr Res; 2002 Nov; 337(20):1833-49. PubMed ID: 12431885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Free energy surfaces for the alpha(1 --> 4)-glycosidic linkage: implications for polysaccharide solution structure and dynamics.
    Kuttel MM; Naidoo KJ
    J Phys Chem B; 2005 Apr; 109(15):7468-74. PubMed ID: 16851857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NMR solution geometry of saccharides containing the 6-O-(α-D-glucopyranosyl)-α/β-D-glucopyranose (isomaltose) or 6-O-(α-D-galactopyranosyl)-α/β-D-glucopyranose (melibiose) core.
    Watson A; Hackbusch S; Franz AH
    Carbohydr Res; 2019 Feb; 473():18-35. PubMed ID: 30599389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ramachandran-type plots for glycosidic linkages: Examples from molecular dynamic simulations using the Glycam06 force field.
    Salisburg AM; Deline AL; Lexa KW; Shields GC; Kirschner KN
    J Comput Chem; 2009 Apr; 30(6):910-21. PubMed ID: 18785152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.