These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 10903038)

  • 1. Tissue responses to molecularly reinforced polylactide-co-glycolide implants.
    Lewandrowski KU; Gresser JD; Wise DL; Trantolo DJ; Hasirci V
    J Biomater Sci Polym Ed; 2000; 11(4):401-14. PubMed ID: 10903038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High strength bioresorbable bone plates: preparation, mechanical properties and in vitro analysis.
    Hasirci V; Lewandrowski KU; Bondre SP; Gresser JD; Trantolo DJ; Wise DL
    Biomed Mater Eng; 2000; 10(1):19-29. PubMed ID: 10950204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatility of biodegradable biopolymers: degradability and an in vivo application.
    Hasirci V; Lewandrowski K; Gresser JD; Wise DL; Trantolo DJ
    J Biotechnol; 2001 Mar; 86(2):135-50. PubMed ID: 11245902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the pull-out forces of bioabsorbable polylactide/glycolide screws (Biosorb and Lactosorb) and tacks: a study on the stability of fixation in human cadaver parietal bones.
    Tiainen J; Leinonen S; Ilomäki J; Suokas E; Törmälä P; Waris T; Ashammakhi N
    J Craniofac Surg; 2002 Jul; 13(4):538-43. PubMed ID: 12140419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidity near eroding polylactide-polyglycolide in vitro and in vivo in rabbit tibial bone chambers.
    Martin C; Winet H; Bao JY
    Biomaterials; 1996 Dec; 17(24):2373-80. PubMed ID: 8982478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical evaluation of titanium, biodegradable plate and screw, and cyanoacrylate glue fixation systems in craniofacial surgery.
    Gosain AK; Song L; Corrao MA; Pintar FA
    Plast Reconstr Surg; 1998 Mar; 101(3):582-91. PubMed ID: 9500375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of porous poly-D,L-lactide-co-glycolide particles as a carrier for recombinant human bone morphogenetic protein-2 during osteoinduction in vivo.
    Boyan BD; Lohmann CH; Somers A; Niederauer GG; Wozney JM; Dean DD; Carnes DL; Schwartz Z
    J Biomed Mater Res; 1999 Jul; 46(1):51-9. PubMed ID: 10357135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA).
    Hollinger JO
    J Biomed Mater Res; 1983 Jan; 17(1):71-82. PubMed ID: 6298242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of poly DL-lactide--co-glycolide implants and xenogeneic bone matrix-derived growth factors on calvarial bone repair in the rabbit.
    Meikle MC; Papaioannou S; Ratledge TJ; Speight PM; Watt-Smith SR; Hill PA; Reynolds JJ
    Biomaterials; 1994 Jun; 15(7):513-21. PubMed ID: 7918904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Experimental assessment of biodegradable polyglycolic and polylactic acid polymers for medical use].
    Kulakov AA; Grigor'ian AS; Arkhipov AV
    Stomatologiia (Mosk); 2013; 92(5):4-8. PubMed ID: 24300698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone morphogenetic protein encapsulated with a biodegradable and biocompatible polymer.
    Isobe M; Yamazaki Y; Oida S; Ishihara K; Nakabayashi N; Amagasa T
    J Biomed Mater Res; 1996 Nov; 32(3):433-8. PubMed ID: 8897149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo evaluation in rabbits of a controlled release 5-fluorouracil subconjunctival implant based on poly(D,L-lactide-co-glycolide).
    Wang G; Tucker IG; Roberts MS; Hirst LW
    Pharm Res; 1996 Jul; 13(7):1059-64. PubMed ID: 8842045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the miscibility of biodegradable polyester/polyphosphazene blends using cross-linkable polyphosphazene.
    Shan D; Huang Z; Zhao Y; Cai Q; Yang X
    Biomed Mater; 2014 Nov; 9(6):061001. PubMed ID: 25426734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production and surface modification of polylactide-based polymeric scaffolds for soft-tissue engineering.
    Cao Y; Croll TI; Cooper-White JJ; O'Connor AJ; Stevens GW
    Methods Mol Biol; 2004; 238():87-112. PubMed ID: 14970441
    [No Abstract]   [Full Text] [Related]  

  • 16. PLGA bone plates reinforced with crosslinked PPF.
    Hasirci V; Litman AE; Trantolo DJ; Gresser JD; Wise DL; Margolis HC
    J Mater Sci Mater Med; 2002 Feb; 13(2):159-67. PubMed ID: 15348638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical properties of lactide-co-glycolide polymers for the use in microparticle preparation by the aerosol solvent extraction system.
    Engwicht A; Girreser U; Müller BW
    Int J Pharm; 1999 Aug; 185(1):61-72. PubMed ID: 10425366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restoration of bone discontinuities in dogs using a biodegradable implant.
    Hollinger JO; Schmitz JP
    J Oral Maxillofac Surg; 1987 Jul; 45(7):594-600. PubMed ID: 3474375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices.
    Jain RA
    Biomaterials; 2000 Dec; 21(23):2475-90. PubMed ID: 11055295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo release of ciprofloxacin from PLGA 50:50 implants.
    Ramchandani M; Robinson D
    J Control Release; 1998 Jul; 54(2):167-75. PubMed ID: 9724903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.