These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 10903105)

  • 1. Adaptation of the CAS test system and synthetic sewage for biological nutrient removal. Part II: design and validation of test units.
    Rottiers A; Boeije G; Corstanje R; Decraene K
    Chemosphere; 1999 Feb; 38(4):711-27. PubMed ID: 10903105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of the CAS test system and synthetic sewage for biological nutrient removal. Part I: development of a new synthetic sewage.
    Boeije G; Corstanje R; Rottiers A; Schowanek D
    Chemosphere; 1999 Feb; 38(4):699-709. PubMed ID: 10903104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fate of linear alcohol ethoxylates during activated sludge sewage treatment.
    Battersby NS; Sherren AJ; Bumpus RN; Eagle R; Molade IK
    Chemosphere; 2001 Oct; 45(1):109-21. PubMed ID: 11572584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the removal and biodegradation potential of radiolabeled organic chemicals in activated sludge.
    Shimp RJ; Larson RJ
    Ecotoxicol Environ Saf; 1996 Jun; 34(1):85-93. PubMed ID: 8793324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of activated sludge configuration and operating conditions on in vitro and in vivo responses and trace organic compound removal.
    Parker WJ; Pileggi V; Seto P; Chen X; Ogunlaja M; Van Der Kraak G; Parrott J
    Sci Total Environ; 2014 Aug; 490():360-9. PubMed ID: 24867701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of anoxia and anaerobia on ciliate community in biological nutrient removal systems using laboratory-scale sequencing batch reactors (SBRs).
    Dubber D; Gray NF
    Water Res; 2011 Mar; 45(6):2213-26. PubMed ID: 21329959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes.
    Ogunlaja OO; Parker WJ
    Sci Total Environ; 2015 May; 514():202-10. PubMed ID: 25666280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate and effects of triclosan in activated sludge.
    Federle TW; Kaiser SK; Nuck BA
    Environ Toxicol Chem; 2002 Jul; 21(7):1330-7. PubMed ID: 12109731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of characteristics of effluent DON derived from conventional activated sludge (CAS) and predenitrification biological removal (BNR): In terms of proteins and humic substances.
    Eom H; Park C
    Environ Res; 2021 May; 196():110912. PubMed ID: 33639143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental investigation of the external nitrification biological nutrient removal activated sludge (ENBNRAS) system.
    Hu ZR; Sötemann S; Moodley R; Wentzel MC; Ekama GA
    Biotechnol Bioeng; 2003 Aug; 83(3):260-73. PubMed ID: 12783482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate assessment of the biodegradation of cationic surfactants in activated sludge reactors (OECD TG 303A).
    Geerts R; van Ginkel CG; Plugge CM
    Ecotoxicol Environ Saf; 2015 Aug; 118():83-89. PubMed ID: 25913361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overall effect of carbon production and nutrient release in sludge holding tank on mainstream biological nutrient removal efficiency.
    Jabari P; Yuan Q; Oleszkiewicz JA
    Environ Technol; 2018 Sep; 39(18):2390-2410. PubMed ID: 28712337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Performance of treating wastewater and anti-shockloading in oxic-settling-anaerobic (OSA) process for minimization of excess sludge].
    Wang JF; Jin WB; Zhao QL; Liu ZG; Lin JK
    Huan Jing Ke Xue; 2007 Nov; 28(11):2488-93. PubMed ID: 18290471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of membrane solid-liquid separation on design of biological nutrient removal activated sludge systems.
    Ramphao M; Wentzel MC; Merritt R; Ekama GA; Young T; Buckley CA
    Biotechnol Bioeng; 2005 Mar; 89(6):630-46. PubMed ID: 15696540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.
    Kishida N; Kim J; Tsuneda S; Sudo R
    Water Res; 2006 Jul; 40(12):2303-10. PubMed ID: 16766009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological nitrogen and phosphorus removal in UCT-type MBR process.
    Lee H; Han J; Yun Z
    Water Sci Technol; 2009; 59(11):2093-9. PubMed ID: 19494447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bulking sludge in biological nutrient removal systems.
    Martins AM; Heijnen JJ; van Loosdrecht MC
    Biotechnol Bioeng; 2004 Apr; 86(2):125-35. PubMed ID: 15052632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal.
    Li X; Chen H; Hu L; Yu L; Chen Y; Gu G
    Environ Sci Technol; 2011 Mar; 45(5):1834-9. PubMed ID: 21280571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of trace organic compounds by activated sludge from a biological nutrient removal treatment system.
    Inyang M; Flowers R; McAvoy D; Dickenson E
    Bioresour Technol; 2016 Sep; 216():778-84. PubMed ID: 27309772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.