BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 10903320)

  • 1. A method for determining the in vivo topology of yeast polytopic membrane proteins demonstrates that Gap1p fully integrates into the membrane independently of Shr3p.
    Gilstring CF; Ljungdahl PO
    J Biol Chem; 2000 Oct; 275(40):31488-95. PubMed ID: 10903320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shr3p mediates specific COPII coatomer-cargo interactions required for the packaging of amino acid permeases into ER-derived transport vesicles.
    Gilstring CF; Melin-Larsson M; Ljungdahl PO
    Mol Biol Cell; 1999 Nov; 10(11):3549-65. PubMed ID: 10564255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane topology of the arsenite permease Acr3 from Saccharomyces cerevisiae.
    Wawrzycka D; Markowska K; Maciaszczyk-Dziubinska E; Migocka M; Wysocki R
    Biochim Biophys Acta Biomembr; 2017 Jan; 1859(1):117-125. PubMed ID: 27836640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid permeases require COPII components and the ER resident membrane protein Shr3p for packaging into transport vesicles in vitro.
    Kuehn MJ; Schekman R; Ljungdahl PO
    J Cell Biol; 1996 Nov; 135(3):585-95. PubMed ID: 8909535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane topology of the yeast uracil permease.
    Garnier C; Blondel MO; Haguenauer-Tsapis R
    Mol Microbiol; 1996 Sep; 21(5):1061-73. PubMed ID: 8885275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specialized membrane-localized chaperones prevent aggregation of polytopic proteins in the ER.
    Kota J; Ljungdahl PO
    J Cell Biol; 2005 Jan; 168(1):79-88. PubMed ID: 15623581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease.
    Helliwell SB; Losko S; Kaiser CA
    J Cell Biol; 2001 May; 153(4):649-62. PubMed ID: 11352928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8.
    Roberg KJ; Bickel S; Rowley N; Kaiser CA
    Genetics; 1997 Dec; 147(4):1569-84. PubMed ID: 9409822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topology of membrane insertion in vitro and plasma membrane assembly in vivo of the yeast arginine permease.
    Ahmad M; Bussey H
    Mol Microbiol; 1988 Sep; 2(5):627-35. PubMed ID: 3054424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport activity-dependent intracellular sorting of the yeast general amino acid permease.
    Cain NE; Kaiser CA
    Mol Biol Cell; 2011 Jun; 22(11):1919-29. PubMed ID: 21471002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway.
    Rubio-Texeira M; Kaiser CA
    Mol Biol Cell; 2006 Jul; 17(7):3031-50. PubMed ID: 16641373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane topology of the yeast endoplasmic reticulum-localized ubiquitin ligase Doa10 and comparison with its human ortholog TEB4 (MARCH-VI).
    Kreft SG; Wang L; Hochstrasser M
    J Biol Chem; 2006 Feb; 281(8):4646-53. PubMed ID: 16373356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the transmembrane topology of yeast Sec61p, an essential component of the endoplasmic reticulum translocation complex.
    Wilkinson BM; Critchley AJ; Stirling CJ
    J Biol Chem; 1996 Oct; 271(41):25590-7. PubMed ID: 8810333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Only one of the charged amino acids located in membrane-spanning regions is important for the function of the Saccharomyces cerevisiae uracil permease.
    Pinson B; Chevallier J; Urban-Grimal D
    Biochem J; 1999 Apr; 339 ( Pt 1)(Pt 1):37-42. PubMed ID: 10085225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast.
    Gao M; Kaiser CA
    Nat Cell Biol; 2006 Jul; 8(7):657-67. PubMed ID: 16732272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-dependent reversible inactivation of the general amino acid permease.
    Risinger AL; Cain NE; Chen EJ; Kaiser CA
    Mol Biol Cell; 2006 Oct; 17(10):4411-9. PubMed ID: 16885415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a membrane protein for site-specific proteolysis: properties of engineered factor Xa protease sites in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Dunten RL; Kaback HR
    Biochemistry; 1995 Jan; 34(4):1107-12. PubMed ID: 7827058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using SUC2-HIS4C reporter domain to study topology of membrane proteins in Saccharomyces cerevisiae.
    Sengstag C
    Methods Enzymol; 2000; 327():175-90. PubMed ID: 11044982
    [No Abstract]   [Full Text] [Related]  

  • 19. A C-terminal di-leucine motif and nearby sequences are required for NH4(+)-induced inactivation and degradation of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae.
    Hein C; André B
    Mol Microbiol; 1997 May; 24(3):607-16. PubMed ID: 9179853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane topology of the Escherichia coli gamma-aminobutyrate transporter: implications on the topography and mechanism of prokaryotic and eukaryotic transporters from the APC superfamily.
    Hu LA; King SC
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):69-76. PubMed ID: 9806886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.