These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 10903850)

  • 1. Transcriptional repressor CopR: the structured acidic C terminus is important for protein stability.
    Kuhn K; Steinmetzer K; Brantl S
    J Mol Biol; 2000 Jul; 300(5):1021-31. PubMed ID: 10903850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional repressor CopR: structure model-based localization of the deoxyribonucleic acid binding motif.
    Steinmetzer K; Hillisch A; Behlke J; Brantl S
    Proteins; 2000 Mar; 38(4):393-406. PubMed ID: 10707026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmid pIP501 encoded transcriptional repressor CopR binds to its target DNA as a dimer.
    Steinmetzer K; Behlke J; Brantl S
    J Mol Biol; 1998 Oct; 283(3):595-603. PubMed ID: 9784369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmid pIP501 encoded transcriptional repressor CopR binds asymmetrically at two consecutive major grooves of the DNA.
    Steinmetzer K; Brantl S
    J Mol Biol; 1997 Jun; 269(5):684-93. PubMed ID: 9223633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmid pIP501 encoded transcriptional repressor CopR: single amino acids involved in dimerization are also important for folding of the monomer.
    Steinmetzer K; Kuhn K; Behlke J; Golbik R; Brantl S
    Plasmid; 2002 May; 47(3):201-9. PubMed ID: 12151235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of the arginine repressor-operator complex from Bacillus subtilis.
    Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE
    J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional repressor CopR: dissection of stabilizing motifs within the C terminus.
    Kuhn K; Steinmetzer K; Brantl S
    Microbiology (Reading); 2001 Dec; 147(Pt 12):3387-92. PubMed ID: 11739771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional repressor CopR: amino acids involved in forming the dimeric interface.
    Steinmetzer K; Hillisch A; Behlke J; Brantl S
    Proteins; 2000 Jun; 39(4):408-16. PubMed ID: 10813822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strengthening the dimerisation interface of Lac repressor increases its thermostability by 40 deg. C.
    Gerk LP; Leven O; Müller-Hill B
    J Mol Biol; 2000 Jun; 299(3):805-12. PubMed ID: 10835285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation.
    Backes H; Berens C; Helbl V; Walter S; Schmid FX; Hillen W
    Biochemistry; 1997 May; 36(18):5311-22. PubMed ID: 9154913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the Escherichia coli transcriptional activator MarA using alanine-scanning mutagenesis: residues important for DNA binding and activation.
    Gillette WK; Martin RG; Rosner JL
    J Mol Biol; 2000 Jun; 299(5):1245-55. PubMed ID: 10873449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clarification of the dimerization domain and its functional significance for the Escherichia coli nucleoid protein H-NS.
    Ueguchi C; Seto C; Suzuki T; Mizuno T
    J Mol Biol; 1997 Nov; 274(2):145-51. PubMed ID: 9398522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing activation of the prokaryotic arginine transcriptional regulator using chimeric proteins.
    Holtham CA; Jumel K; Miller CM; Harding SE; Baumberg S; Stockley PG
    J Mol Biol; 1999 Jun; 289(4):707-27. PubMed ID: 10369757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties.
    Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V
    J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of the global regulator KorA of broad-host-range plasmid RK2.
    Kostelidou K; Jagura-Burdzy G; Thomas CM
    J Mol Biol; 1998 Aug; 281(3):453-63. PubMed ID: 9698561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of omega transcriptional repressor encoded by Streptococcus pyogenes plasmid pSM19035 at 1.5 A resolution.
    Murayama K; Orth P; de la Hoz AB; Alonso JC; Saenger W
    J Mol Biol; 2001 Dec; 314(4):789-96. PubMed ID: 11733997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent attachment of Arc repressor subunits by a peptide linker enhances affinity for operator DNA.
    Robinson CR; Sauer RT
    Biochemistry; 1996 Jan; 35(1):109-16. PubMed ID: 8555163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urea and thermal equilibrium denaturation studies on the dimerization domain of Escherichia coli Trp repressor.
    Gloss LM; Matthews CR
    Biochemistry; 1997 May; 36(19):5612-23. PubMed ID: 9153401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Affinity selective isolation of ligands from peptide libraries through display on a lac repressor "headpiece dimer".
    Gates CM; Stemmer WP; Kaptein R; Schatz PJ
    J Mol Biol; 1996 Jan; 255(3):373-86. PubMed ID: 8568883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The central region of RepE initiator protein of mini-F plasmid plays a crucial role in dimerization required for negative replication control.
    Matsunaga F; Ishiai M; Kobayashi G; Uga H; Yura T; Wada C
    J Mol Biol; 1997 Nov; 274(1):27-38. PubMed ID: 9398513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.