BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 10903856)

  • 1. Multiple regulators and their interactions in vivo and in vitro with the cbb regulons of Rhodobacter capsulatus.
    Vichivanives P; Bird TH; Bauer CE; Robert Tabita F
    J Mol Biol; 2000 Jul; 300(5):1079-99. PubMed ID: 10903856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of CbbR and RegA* transcription regulators with the Rhodobacter sphaeroides cbbIPromoter-operator region.
    Dubbs JM; Bird TH; Bauer CE; Tabita FR
    J Biol Chem; 2000 Jun; 275(25):19224-30. PubMed ID: 10748066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides.
    Dangel AW; Tabita FR
    Mol Microbiol; 2009 Feb; 71(3):717-29. PubMed ID: 19077171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of the cbbII promoter-operator region with CbbR and RegA (PrrA) regulators indicate distinct mechanisms to control expression of the two cbb operons of Rhodobacter sphaeroides.
    Dubbs JM; Tabita FR
    J Biol Chem; 2003 May; 278(18):16443-50. PubMed ID: 12601011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effector-mediated interaction of CbbRI and CbbRII regulators with target sequences in Rhodobacter capsulatus.
    Dubbs P; Dubbs JM; Tabita FR
    J Bacteriol; 2004 Dec; 186(23):8026-35. PubMed ID: 15547275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological control and regulation of the Rhodobacter capsulatus cbb operons.
    Paoli GC; Vichivanives P; Tabita FR
    J Bacteriol; 1998 Aug; 180(16):4258-69. PubMed ID: 9696777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid residues of RegA important for interactions with the CbbR-DNA complex of Rhodobacter sphaeroides.
    Dangel AW; Luther A; Tabita FR
    J Bacteriol; 2014 Sep; 196(17):3179-90. PubMed ID: 24957624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CbbR and RegA regulate cbb operon transcription in Ralstonia eutropha H16.
    Gruber S; Schwab H; Heidinger P
    J Biotechnol; 2017 Sep; 257():78-86. PubMed ID: 28687513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetics and control of CO(2) assimilation in the chemoautotroph Ralstonia eutropha.
    Bowien B; Kusian B
    Arch Microbiol; 2002 Aug; 178(2):85-93. PubMed ID: 12115053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic signals that lead to control of CBB gene expression in Rhodobacter capsulatus.
    Tichi MA; Tabita FR
    J Bacteriol; 2002 Apr; 184(7):1905-15. PubMed ID: 11889097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth.
    Gibson JL; Dubbs JM; Tabita FR
    J Bacteriol; 2002 Dec; 184(23):6654-64. PubMed ID: 12426354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide sequence and functional analysis of cbbR, a positive regulator of the Calvin cycle operons of Rhodobacter sphaeroides.
    Gibson JL; Tabita FR
    J Bacteriol; 1993 Sep; 175(18):5778-84. PubMed ID: 8376325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operator binding of the CbbR protein, which activates the duplicate cbb CO2 assimilation operons of Alcaligenes eutrophus.
    Kusian B; Bowien B
    J Bacteriol; 1995 Nov; 177(22):6568-74. PubMed ID: 7592435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Up-regulated expression of the cbb(I) and cbb(II) operons during photoheterotrophic growth of a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion mutant of Rhodobacter sphaeroides.
    Smith SA; Tabita FR
    J Bacteriol; 2002 Dec; 184(23):6721-4. PubMed ID: 12426361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CbbR, the Master Regulator for Microbial Carbon Dioxide Fixation.
    Dangel AW; Tabita FR
    J Bacteriol; 2015 Nov; 197(22):3488-98. PubMed ID: 26324454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory twist and synergistic role of metabolic coinducer- and response regulator-mediated CbbR-cbbI interactions in Rhodopseudomonas palustris CGA010.
    Joshi GS; Zianni M; Bobst CE; Tabita FR
    J Bacteriol; 2013 Apr; 195(7):1381-8. PubMed ID: 23292778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid substitutions in the transcriptional regulator CbbR lead to constitutively active CbbR proteins that elevate expression of the cbb CO2 fixation operons in Ralstonia eutropha (Cupriavidus necator) and identify regions of CbbR necessary for gene activation.
    Dangel AW; Tabita FR
    Microbiology (Reading); 2015 Sep; 161(9):1816-1829. PubMed ID: 26296349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of CbbR-binding affinity to the upstream of cbbF and cfxB on the metabolic effector in Rhodobacter sphaeroides.
    Lee HJ; Sekhon SS; Kim YS; Park JY; Kim YH; Min J
    Curr Microbiol; 2015 Jun; 70(6):816-20. PubMed ID: 25708583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the duplicate ribulose-1,5-bisphosphate carboxylase genes and cbb promoters of Alcaligenes eutrophus.
    Kusian B; Bednarski R; Husemann M; Bowien B
    J Bacteriol; 1995 Aug; 177(15):4442-50. PubMed ID: 7543477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residues that influence in vivo and in vitro CbbR function in Rhodobacter sphaeroides and identification of a specific region critical for co-inducer recognition.
    Dangel AW; Gibson JL; Janssen AP; Tabita FR
    Mol Microbiol; 2005 Sep; 57(5):1397-414. PubMed ID: 16102008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.