BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10906329)

  • 1. Cold adaptation of a mesophilic subtilisin-like protease by laboratory evolution.
    Wintrode PL; Miyazaki K; Arnold FH
    J Biol Chem; 2000 Oct; 275(41):31635-40. PubMed ID: 10906329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis.
    Zhong CQ; Song S; Fang N; Liang X; Zhu H; Tang XF; Tang B
    Biotechnol Bioeng; 2009 Dec; 104(5):862-70. PubMed ID: 19609954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of adaptation in a laboratory evolved thermophilic enzyme.
    Wintrode PL; Miyazaki K; Arnold FH
    Biochim Biophys Acta; 2001 Sep; 1549(1):1-8. PubMed ID: 11566363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and analysis of WF146 protease, a novel thermophilic subtilisin-like protease with four inserted surface loops.
    Wu J; Bian Y; Tang B; Chen X; Shen P; Peng Z
    FEMS Microbiol Lett; 2004 Jan; 230(2):251-8. PubMed ID: 14757247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41.
    Davail S; Feller G; Narinx E; Gerday C
    J Biol Chem; 1994 Jul; 269(26):17448-53. PubMed ID: 8021248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complete amino acid substitutions at position 131 that are positively involved in cold adaptation of subtilisin BPN'.
    Taguchi S; Komada S; Momose H
    Appl Environ Microbiol; 2000 Apr; 66(4):1410-5. PubMed ID: 10742220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed coevolution of stability and catalytic activity in calcium-free subtilisin.
    Strausberg SL; Ruan B; Fisher KE; Alexander PA; Bryan PN
    Biochemistry; 2005 Mar; 44(9):3272-9. PubMed ID: 15736937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subtilisin from psychrophilic antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold.
    Narinx E; Baise E; Gerday C
    Protein Eng; 1997 Nov; 10(11):1271-9. PubMed ID: 9514115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state.
    Almog O; González A; Godin N; de Leeuw M; Mekel MJ; Klein D; Braun S; Shoham G; Walter RL
    Proteins; 2009 Feb; 74(2):489-96. PubMed ID: 18655058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a substrate-specific cold-adapted subtilisin.
    Tindbaek N; Svendsen A; Oestergaard PR; Draborg H
    Protein Eng Des Sel; 2004 Feb; 17(2):149-56. PubMed ID: 15047911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 0.93A crystal structure of sphericase: a calcium-loaded serine protease from Bacillus sphaericus.
    Almog O; González A; Klein D; Greenblatt HM; Braun S; Shoham G
    J Mol Biol; 2003 Oct; 332(5):1071-82. PubMed ID: 14499610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into cold inactivation of tryptophanase and cold adaptation of subtilisin S41.
    Almog O; Kogan A; Leeuw Md; Gdalevsky GY; Cohen-Luria R; Parola AH
    Biopolymers; 2008 May; 89(5):354-9. PubMed ID: 17937401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning, expression and decoding of the cold adaptation of a new widely represented thermolabile subtilisin-like protease.
    Acevedo JP; Rodriguez V; Saavedra M; Muñoz M; Salazar O; Asenjo JA; Andrews BA
    J Appl Microbiol; 2013 Feb; 114(2):352-63. PubMed ID: 23043619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature effects on structure and dynamics of the psychrophilic protease subtilisin S41 and its thermostable mutants in solution.
    Martinez R; Schwaneberg U; Roccatano D
    Protein Eng Des Sel; 2011 Jul; 24(7):533-44. PubMed ID: 21471132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution.
    Martinez R; Jakob F; Tu R; Siegert P; Maurer KH; Schwaneberg U
    Biotechnol Bioeng; 2013 Mar; 110(3):711-20. PubMed ID: 23097081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the Thermostability and Activity of a Thermophilic Subtilase by Incorporating Structural Elements of Its Psychrophilic Counterpart.
    Xu BL; Dai M; Chen Y; Meng D; Wang Y; Fang N; Tang XF; Tang B
    Appl Environ Microbiol; 2015 Sep; 81(18):6302-13. PubMed ID: 26150464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of selected Ser/Ala and Xaa/Pro mutations on the stability and catalytic properties of a cold adapted subtilisin-like serine proteinase.
    Arnórsdóttir J; Helgadóttir S; Thorbjarnardóttir SH; Eggertsson G; Kristjánsson MM
    Biochim Biophys Acta; 2007 Jun; 1774(6):749-55. PubMed ID: 17490920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thirty-degree shift in optimum temperature of a thermophilic lipase by a single-point mutation: effect of serine to threonine mutation on structural flexibility.
    Sharma M; Kumar R; Singh R; Kaur J
    Mol Cell Biochem; 2017 Jun; 430(1-2):21-30. PubMed ID: 28190170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of surface loop insertions and disulfide bond in the stabilization of thermophilic WF146 protease.
    Bian Y; Liang X; Fang N; Tang XF; Tang B; Shen P; Peng Z
    FEBS Lett; 2006 Oct; 580(25):6007-14. PubMed ID: 17052711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.