BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 10906489)

  • 1. The novel PCR-based technique of genotyping applied to identification of scrambler mutation in mice.
    Usman N; Tarabykin V; Gruss P
    Brain Res Brain Res Protoc; 2000 Jul; 5(3):243-7. PubMed ID: 10906489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid genotyping of mutant mice using dried blood spots for polymerase chain reaction (PCR) analysis.
    Campbell DB; Hess EJ
    Brain Res Brain Res Protoc; 1997 May; 1(2):117-23. PubMed ID: 9385073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse.
    Ware ML; Fox JW; González JL; Davis NM; Lambert de Rouvroit C; Russo CJ; Chua SC; Goffinet AM; Walsh CA
    Neuron; 1997 Aug; 19(2):239-49. PubMed ID: 9292716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel genotyping strategy based on allele-specific inverse PCR for rapid and reliable identification of conditional FADD knockout mice.
    Dong X; Li J; Li S; Zhang J; Hua ZC
    Mol Biotechnol; 2008 Feb; 38(2):129-35. PubMed ID: 18219592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HLA-DQB1 genotyping by a modified PCR-RFLP method combined with group-specific primers.
    Nomura N; Ota M; Tsuji K; Inoko H
    Tissue Antigens; 1991 Aug; 38(2):53-9. PubMed ID: 1683028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurobehavioral performances and brain regional metabolism in Dab1(scm) (scrambler) mutant mice.
    Jacquelin C; Lalonde R; Jantzen-Ossola C; Strazielle C
    Behav Brain Res; 2013 Sep; 252():92-100. PubMed ID: 23707934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping.
    Lee HB; Schwab TL; Koleilat A; Ata H; Daby CL; Cervera RL; McNulty MS; Bostwick HS; Clark KJ
    Hum Gene Ther; 2016 Jun; 27(6):425-35. PubMed ID: 26986823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [HLA-DQ genotyping using a modified technique of PCR-RFLP: application to HLA-DQA1 gene].
    Haras D; Piperi MH; Cucchi-Mouillot P
    C R Acad Sci III; 1995 Sep; 318(9):977-84. PubMed ID: 8521082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Adapter-ligation mediated allele-specific amplification (ALM-ASA) for multiplex SNP genotyping].
    Wang WP; Ni KY; Zhou GH
    Yi Chuan; 2006 Feb; 28(2):219-25. PubMed ID: 16520320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel and quick PCR-based method to genotype mice with a leptin receptor mutation (db/db mice).
    Peng BY; Wang Q; Luo YH; He JF; Tan T; Zhu H
    Acta Pharmacol Sin; 2018 Jan; 39(1):117-123. PubMed ID: 28748911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-specificity single-tube multiplex genotyping using Ribo-PAP PCR, tag primers, alkali cleavage of RNA/DNA chimeras and MALDI-TOF MS.
    Mauger F; Gelfand DH; Gupta A; Bodepudi V; Will SG; Bauer K; Myers TW; Gut IG
    Hum Mutat; 2013 Jan; 34(1):266-73. PubMed ID: 23132774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HLA-DRB1 genotyping by modified PCR-RFLP method combined with group-specific primers.
    Ota M; Seki T; Fukushima H; Tsuji K; Inoko H
    Tissue Antigens; 1992 Apr; 39(4):187-202. PubMed ID: 1356282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotyping methods to detect a unique neuroprotective factor (Wld(s)) for axons.
    Mi W; Conforti L; Coleman MP
    J Neurosci Methods; 2002 Jan; 113(2):215-8. PubMed ID: 11772443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-temperature LATE-PCR endpoint genotyping.
    Sanchez JA; Abramowitz JD; Salk JJ; Reis AH; Rice JE; Pierce KE; Wangh LJ
    BMC Biotechnol; 2006 Dec; 6():44. PubMed ID: 17144924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of real-time PCR and fluorogenic probes for rapid and accurate genotyping of newborn mice.
    Hnatyszyn HJ; Podack ER; Young AK; Seivright R; Spruill G; Kraus G
    Mol Cell Probes; 2001 Jun; 15(3):169-75. PubMed ID: 11352598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay for the mouse leptin receptor (Lepr(db)) mutation.
    Horvat S; Bünger L
    Lab Anim; 1999 Oct; 33(4):380-4. PubMed ID: 10778787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An extensive polymerase chain reaction-allele-specific polymorphism strategy for clinical ABO blood group genotyping that avoids potential errors caused by null, subgroup, and hybrid alleles.
    Hosseini-Maaf B; Hellberg A; Chester MA; Olsson ML
    Transfusion; 2007 Nov; 47(11):2110-25. PubMed ID: 17958541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymerase chain reaction based genotyping for characterization of SLA-DQB and SLA-DRB alleles in domestic pigs.
    Shia YC; Bradshaw M; Rutherford MS; Lewin HA; Schook LB
    Anim Genet; 1995 Apr; 26(2):91-100. PubMed ID: 7537478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Needle-in-a-haystack detection and identification of base substitution mutations in human tissues.
    Wilson VL; Wei Q; Wade KR; Chisa M; Bailey D; Kanstrup CM; Yin X; Jackson CM; Thompson B; Lee WR
    Mutat Res; 1999 Aug; 406(2-4):79-100. PubMed ID: 10479725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SNP genotyping on a genome-wide amplified DOP-PCR template.
    Grant SF; Steinlicht S; Nentwich U; Kern R; Burwinkel B; Tolle R
    Nucleic Acids Res; 2002 Nov; 30(22):e125. PubMed ID: 12434007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.