These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 10906692)

  • 1. New biocompatible polymer surface coating for stents results in a low neointimal response.
    Bär FW; van der Veen FH; Benzina A; Habets J; Koole LH
    J Biomed Mater Res; 2000 Oct; 52(1):193-8. PubMed ID: 10906692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addition of cytochalasin D to a biocompatible oil stent coating inhibits intimal hyperplasia in a porcine coronary model.
    Salu KJ; Huang Y; Bosmans JM; Liu X; Li S; Wang L; Verbeken E; Bult H; Vrints CJ; De Scheerder IK
    Coron Artery Dis; 2003 Dec; 14(8):545-55. PubMed ID: 14646676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methotrexate loaded SAE coated coronary stents reduce neointimal hyperplasia in a porcine coronary model.
    Huang Y; Salu K; Liu X; Li S; Wang L; Verbeken E; Bosmans J; De Scheerder I
    Heart; 2004 Feb; 90(2):195-9. PubMed ID: 14729797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the biocompatibility of two new diamond-like stent coatings (Dylyn) in a porcine coronary stent model.
    De Scheerder I; Szilard M; Yanming H; Ping XB; Verbeken E; Neerinck D; Demeyere E; Coppens W; Van de Werf F
    J Invasive Cardiol; 2000 Aug; 12(8):389-94. PubMed ID: 10953100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local methylprednisolone delivery using a BiodivYsio phosphorylcholine-coated drug-delivery stent reduces inflammation and neointimal hyperplasia in a porcine coronary stent model.
    Huang Y; Liu X; Wang L; Verbeken E; Li S; De Scheerder I
    Int J Cardiovasc Intervent; 2003; 5(3):166-71. PubMed ID: 12959735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model.
    Lincoff AM; Furst JG; Ellis SG; Tuch RJ; Topol EJ
    J Am Coll Cardiol; 1997 Mar; 29(4):808-16. PubMed ID: 9091528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Percutaneous polymeric stents in porcine coronary arteries. Initial experience with polyethylene terephthalate stents.
    Murphy JG; Schwartz RS; Edwards WD; Camrud AR; Vlietstra RE; Holmes DR
    Circulation; 1992 Nov; 86(5):1596-604. PubMed ID: 1423971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric stenting in the porcine coronary artery model: differential outcome of exogenous fibrin sleeves versus polyurethane-coated stents.
    Holmes DR; Camrud AR; Jorgenson MA; Edwards WD; Schwartz RS
    J Am Coll Cardiol; 1994 Aug; 24(2):525-31. PubMed ID: 8034892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetramethylpyrazine-eluting stents prevented in-stent restenosis in a porcine model.
    Ma G; Ding S; Feng Y; Shen C; Chen L; Chen Z
    J Cardiovasc Pharmacol; 2007 Aug; 50(2):201-5. PubMed ID: 17703137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced c-myc antisense (AVI-4126)-eluting phosphorylcholine-coated stent implantation is associated with complete vascular healing and reduced neointimal formation in the porcine coronary restenosis model.
    Kipshidze NN; Iversen P; Kim HS; Yiazdi H; Dangas G; Seaborn R; New G; Tio F; Waksman R; Mehran R; Tsapenko M; Stone GW; Roubin GS; Iyer S; Leon MB; Moses JW
    Catheter Cardiovasc Interv; 2004 Apr; 61(4):518-27. PubMed ID: 15065150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility of polymer-coated oversized metallic stents implanted in normal porcine coronary arteries.
    De Scheerder IK; Wilczek KL; Verbeken EV; Vandorpe J; Lan PN; Schacht E; De Geest H; Piessens J
    Atherosclerosis; 1995 Apr; 114(1):105-14. PubMed ID: 7605369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis.
    Heldman AW; Cheng L; Jenkins GM; Heller PF; Kim DW; Ware M; Nater C; Hruban RH; Rezai B; Abella BS; Bunge KE; Kinsella JL; Sollott SJ; Lakatta EG; Brinker JA; Hunter WL; Froehlich JP
    Circulation; 2001 May; 103(18):2289-95. PubMed ID: 11342479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of endovascular stent strut geometry on vascular injury, myointimal hyperplasia, and restenosis.
    Sullivan TM; Ainsworth SD; Langan EM; Taylor S; Snyder B; Cull D; Youkey J; Laberge M
    J Vasc Surg; 2002 Jul; 36(1):143-9. PubMed ID: 12096272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia.
    Windecker S; Mayer I; De Pasquale G; Maier W; Dirsch O; De Groot P; Wu YP; Noll G; Leskosek B; Meier B; Hess OM;
    Circulation; 2001 Aug; 104(8):928-33. PubMed ID: 11514381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paradoxical effects of aurintricarboxylic acid and RG-13577: acute thrombosis and in-stent stenosis in a passive-coated stent.
    Strehblow C; Sperker W; Hevesi A; Garamvölgyi R; Petrasi Z; Shirazi M; Sylvén C; Weiss T; Lotan C; Pugatsch T; Ben-Sasson SA; Orlowski M; Glogar D; Gyöngyösi M
    J Endovasc Ther; 2006 Feb; 13(1):94-103. PubMed ID: 16445329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel biodegradable polymer-coated, paclitaxel-eluting stent inhibits neointimal formation in porcine coronary arteries.
    Buszman P; Milewski K; Zurakowski A; Pajak J; Liszka Ł; Buszman P; Musioł E; AbuSamra M; Trznadel S; Kałuza G
    Kardiol Pol; 2010 May; 68(5):503-9. PubMed ID: 20491008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmental vessel wall shear stress and neointimal formation after sirolimus-eluting stent implantation: physiological insights in a porcine coronary model.
    Carter AJ; Wei W; Gibson L; Collingwood R; Tio F; Dooley J; Kopia GA
    Cardiovasc Revasc Med; 2005; 6(2):58-64. PubMed ID: 16263360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stent-based delivery of ABT-578 via a phosphorylcholine surface coating reduces neointimal formation in the porcine coronary model.
    Collingwood R; Gibson L; Sedlik S; Virmani R; Carter AJ
    Catheter Cardiovasc Interv; 2005 Jun; 65(2):227-32. PubMed ID: 15900559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coronary artery overexpansion increases neointimal hyperplasia after stent placement in a porcine model.
    Russo RJ; Silva PD; Yeager M
    Heart; 2007 Dec; 93(12):1609-15. PubMed ID: 17639098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model.
    Suzuki T; Kopia G; Hayashi S; Bailey LR; Llanos G; Wilensky R; Klugherz BD; Papandreou G; Narayan P; Leon MB; Yeung AC; Tio F; Tsao PS; Falotico R; Carter AJ
    Circulation; 2001 Sep; 104(10):1188-93. PubMed ID: 11535578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.