These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 10906730)

  • 1. The relationship between "BET" and "free volume"-derived parameters for water vapor absorption into amorphous solids.
    Zhang J; Zografi G
    J Pharm Sci; 2000 Aug; 89(8):1063-72. PubMed ID: 10906730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water vapor absorption into amorphous sucrose-poly(vinyl pyrrolidone) and trehalose-poly(vinyl pyrrolidone) mixtures.
    Zhang J; Zografi G
    J Pharm Sci; 2001 Sep; 90(9):1375-85. PubMed ID: 11745790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water vapor absorption into amorphous hydrophobic drug/poly(vinylpyrrolidone) dispersions.
    Crowley KJ; Zografi G
    J Pharm Sci; 2002 Oct; 91(10):2150-65. PubMed ID: 12226842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of solution theories for predicting water vapor absorption by amorphous pharmaceutical solids: a test of the Flory-Huggins and Vrentas models.
    Hancock BC; Zografi G
    Pharm Res; 1993 Sep; 10(9):1262-7. PubMed ID: 8234160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of carbohydrate-protein matrices for nutrient delivery.
    Zhou Y; Roos YH
    J Food Sci; 2011 May; 76(4):E368-76. PubMed ID: 22417357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between the glass transition temperature and water vapor absorption by poly(vinylpyrrolidone).
    Oksanen CA; Zografi G
    Pharm Res; 1990 Jun; 7(6):654-7. PubMed ID: 2367334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The glass transition temperatures of amorphous trehalose-water mixtures and the mobility of water: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Jones W; Motherwell WD; Zifferer G
    Carbohydr Res; 2007 Aug; 342(11):1470-9. PubMed ID: 17511976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moisture sorption characteristics and thermophysical properties of trehalose-PBS mixtures.
    Sitaula R; Bhowmick S
    Cryobiology; 2006 Jun; 52(3):369-85. PubMed ID: 16545359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation of amorphous indomethacin-poly(vinylpyrrolidone) glasses: solubility and hydrogen bonding interactions.
    Xiang TX; Anderson BD
    J Pharm Sci; 2013 Mar; 102(3):876-91. PubMed ID: 23280486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques.
    van Drooge DJ; Hinrichs WL; Visser MR; Frijlink HW
    Int J Pharm; 2006 Mar; 310(1-2):220-9. PubMed ID: 16427226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recrystallization and Water Absorption Properties of Vitrified Trehalose Near Room Temperature.
    Shirakashi R; Takano K
    Pharm Res; 2018 May; 35(7):139. PubMed ID: 29748860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonenzymatic browning in food models in the vicinity of the glass transition: effects of fructose, glucose, and xylose as reducing sugar.
    Lievonen SM; Laaksonen TJ; Roos YH
    J Agric Food Chem; 2002 Nov; 50(24):7034-41. PubMed ID: 12428956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier transform Raman spectroscopic study of the interaction of water vapor with amorphous polymers.
    Taylor LS; Langkilde FW; Zografi G
    J Pharm Sci; 2001 Jul; 90(7):888-901. PubMed ID: 11458337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water Distribution and Clustering on the Lyophilized IgG1 Surface: Insight from Molecular Dynamics Simulations.
    Feng S; Peters GHJ; Ohtake S; Schöneich C; Shalaev E
    Mol Pharm; 2020 Mar; 17(3):900-908. PubMed ID: 31990562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of different "states" of sorbed water on amorphous celecoxib.
    Shete G; Kuncham S; Puri V; Gangwal RP; Sangamwar AT; Bansal AK
    J Pharm Sci; 2014 Jul; 103(7):2033-2041. PubMed ID: 24801826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of spray drying and milling in the production of amorphous dispersions of sulfathiazole/polyvinylpyrrolidone and sulfadimidine/polyvinylpyrrolidone.
    Caron V; Tajber L; Corrigan OI; Healy AM
    Mol Pharm; 2011 Apr; 8(2):532-42. PubMed ID: 21323367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The glass transition and dielectric secondary relaxation of fructose-water mixtures.
    Shinyashiki N; Shinohara M; Iwata Y; Goto T; Oyama M; Suzuki S; Yamamoto W; Yagihara S; Inoue T; Oyaizu S; Yamamoto S; Ngai KL; Capaccioli S
    J Phys Chem B; 2008 Dec; 112(48):15470-7. PubMed ID: 18991437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of Hexane Adsorption on Activated Carbons with Differences in Their Surface Chemistry.
    Hernández-Monje D; Giraldo L; Moreno-Piraján JC
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29470439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative assessment of the significance of molecular mobility as a determinant for the stability of lyophilized insulin formulations.
    Yoshioka S; Aso Y
    Pharm Res; 2005 Aug; 22(8):1358-64. PubMed ID: 16078146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of dynamic vapour sorption methods for the characterisation of water uptake in amorphous trehalose.
    Hunter NE; Frampton CS; Craig DQ; Belton PS
    Carbohydr Res; 2010 Sep; 345(13):1938-44. PubMed ID: 20655513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.