These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 10906786)

  • 21. Wnt/beta-catenin signaling has an essential role in the initiation of limb regeneration.
    Yokoyama H; Ogino H; Stoick-Cooper CL; Grainger RM; Moon RT
    Dev Biol; 2007 Jun; 306(1):170-8. PubMed ID: 17442299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microscopic observations show invasion of inflammatory cells in the limb blastema and epidermis in pre-metamorphic frog tadpoles which destroy the Apical Epidermal CAP and impede regeneration.
    Alibardi L
    Ann Anat; 2017 Mar; 210():94-102. PubMed ID: 27986640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The developmental potencies of the regeneration blastema of the axolotl limb.
    de Both NJ
    Wilhelm Roux Arch Entwickl Mech Org; 1970 Sep; 165(3):242-276. PubMed ID: 28304689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BMP2 induces segment-specific skeletal regeneration from digit and limb amputations by establishing a new endochondral ossification center.
    Yu L; Han M; Yan M; Lee J; Muneoka K
    Dev Biol; 2012 Dec; 372(2):263-73. PubMed ID: 23041115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Analytical study of Xenopus hindlimb regenerate with special reference to muscle regeneration].
    Fujikura K; Tabuchi M; Shimoda Y; Inoue S
    Jikken Dobutsu; 1986 Oct; 35(4):421-32. PubMed ID: 3803428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative Analysis of Cartilage Marker Gene Expression Patterns during Axolotl and Xenopus Limb Regeneration.
    Mitogawa K; Makanae A; Satoh A; Satoh A
    PLoS One; 2015; 10(7):e0133375. PubMed ID: 26186213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of denervation on hindlimb regeneration in Xenopus laevis larvae.
    Filoni S; Paglialunga L
    Differentiation; 1990 Mar; 43(1):10-9. PubMed ID: 2365165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Skeletal advance and arrest in giant non-metamorphosing African clawed frog tadpoles (Xenopus laevis: Daudin).
    Kerney R; Wassersug R; Hall BK
    J Anat; 2010 Jan; 216(1):132-43. PubMed ID: 20402828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reactivation of larval keratin gene (krt62.L) in blastema epithelium during Xenopus froglet limb regeneration.
    Satoh A; Mitogawa K; Saito N; Suzuki M; Suzuki KT; Ochi H; Makanae A
    Dev Biol; 2017 Dec; 432(2):265-272. PubMed ID: 29079423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple digit formation in Xenopus limb bud recombinants.
    Yokoyama H; Endo T; Tamura K; Yajima H; Ide H
    Dev Biol; 1998 Apr; 196(1):1-10. PubMed ID: 9527876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Global analysis of gene expression in Xenopus hindlimbs during stage-dependent complete and incomplete regeneration.
    Grow M; Neff AW; Mescher AL; King MW
    Dev Dyn; 2006 Oct; 235(10):2667-85. PubMed ID: 16871633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration.
    Suzuki M; Satoh A; Ide H; Tamura K
    Dev Biol; 2005 Oct; 286(1):361-75. PubMed ID: 16154125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thyroid hormone receptor knockout prevents the loss of Xenopus tail regeneration capacity at metamorphic climax.
    Wang S; Shibata Y; Fu L; Tanizaki Y; Luu N; Bao L; Peng Z; Shi YB
    Cell Biosci; 2023 Feb; 13(1):40. PubMed ID: 36823612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distal expression of sprouty (spry) genes during Xenopus laevis limb development and regeneration.
    Wang YH; Beck CW
    Gene Expr Patterns; 2014 May; 15(1):61-6. PubMed ID: 24823862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transgenic Xenopus with prx1 limb enhancer reveals crucial contribution of MEK/ERK and PI3K/AKT pathways in blastema formation during limb regeneration.
    Suzuki M; Satoh A; Ide H; Tamura K
    Dev Biol; 2007 Apr; 304(2):675-86. PubMed ID: 17303106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intrinsic control of regenerative loss in Xenopus laevis limbs.
    Muneoka K; Holler-Dinsmore G; Bryant SV
    J Exp Zool; 1986 Oct; 240(1):47-54. PubMed ID: 3772329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regeneration potency of mouse limbs.
    Masaki H; Ide H
    Dev Growth Differ; 2007 Feb; 49(2):89-98. PubMed ID: 17335430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adult Mouse Digit Amputation and Regeneration: A Simple Model to Investigate Mammalian Blastema Formation and Intramembranous Ossification.
    Dawson LA; Brunauer R; Zimmel KN; Qureshi O; Falck AR; Kim P; Dolan CP; Yu L; Lin YL; Daniel B; Yan M; Muneoka K
    J Vis Exp; 2019 Jul; (149):. PubMed ID: 31355793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wound healing and blastema formation in regenerating digit tips of adult mice.
    Fernando WA; Leininger E; Simkin J; Li N; Malcom CA; Sathyamoorthi S; Han M; Muneoka K
    Dev Biol; 2011 Feb; 350(2):301-10. PubMed ID: 21145316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of gene expressions during Xenopus forelimb regeneration.
    Endo T; Tamura K; Ide H
    Dev Biol; 2000 Apr; 220(2):296-306. PubMed ID: 10753517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.