BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 10907252)

  • 1. Physico-chemical, in vitro and in vivo characterisation of polymers for ocular use.
    Hartmann V; Keipert S
    Pharmazie; 2000 Jun; 55(6):440-3. PubMed ID: 10907252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: physicochemical characterisation and in vitro release.
    Rupenthal ID; Green CR; Alany RG
    Int J Pharm; 2011 Jun; 411(1-2):69-77. PubMed ID: 21453762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 2: Precorneal retention and in vivo pharmacodynamic study.
    Rupenthal ID; Green CR; Alany RG
    Int J Pharm; 2011 Jun; 411(1-2):78-85. PubMed ID: 21453763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel in situ gelling ophthalmic drug delivery system based on gellan gum and hydroxyethylcellulose: Innovative rheological characterization, in vitro and in vivo evidence of a sustained precorneal retention time.
    Destruel PL; Zeng N; Seguin J; Douat S; Rosa F; Brignole-Baudouin F; Dufaÿ S; Dufaÿ-Wojcicki A; Maury M; Mignet N; Boudy V
    Int J Pharm; 2020 Jan; 574():118734. PubMed ID: 31705970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-Carnosine: multifunctional dipeptide buffer for sustained-duration topical ophthalmic formulations.
    Singh SR; Carreiro ST; Chu J; Prasanna G; Niesman MR; Collette Iii WW; Younis HS; Sartnurak S; Gukasyan HJ
    J Pharm Pharmacol; 2009 Jun; 61(6):733-42. PubMed ID: 19505363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Use of a novel polymer, the in-situ gelling mucoadhesive thiolated poly(aspartic acid) in ophthalmic drug delivery].
    Horvát G; Budai-Szűcs M; Berkó S; Szabóné-Révész P; Gyarmati B; Szilágyi BÁ; Szilágyi A; Csányi Erzsébet
    Acta Pharm Hung; 2015; 85(4):115-21. PubMed ID: 26964399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gellan gum and its methacrylated derivatives as in situ gelling mucoadhesive formulations of pilocarpine: In vitro and in vivo studies.
    Agibayeva LE; Kaldybekov DB; Porfiryeva NN; Garipova VR; Mangazbayeva RA; Moustafine RI; Semina II; Mun GA; Kudaibergenov SE; Khutoryanskiy VV
    Int J Pharm; 2020 Mar; 577():119093. PubMed ID: 32004682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ gelling of alginate/pluronic solutions for ophthalmic delivery of pilocarpine.
    Lin HR; Sung KC; Vong WJ
    Biomacromolecules; 2004; 5(6):2358-65. PubMed ID: 15530052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride.
    Miyazaki S; Suzuki S; Kawasaki N; Endo K; Takahashi A; Attwood D
    Int J Pharm; 2001 Oct; 229(1-2):29-36. PubMed ID: 11604255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained release ophthalmic formulations of pilocarpine.
    Deshpande SG; Shirolkar S
    J Pharm Pharmacol; 1989 Mar; 41(3):197-200. PubMed ID: 2568450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on topical ophthalmic drug delivery system: Reference to viscosity enhancer.
    Pawar PK; Rathod RD; Jagadale SR
    Polim Med; 2024; 54(1):71-84. PubMed ID: 38533624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase transition water-in-oil microemulsions as ocular drug delivery systems: in vitro and in vivo evaluation.
    Chan J; Maghraby GM; Craig JP; Alany RG
    Int J Pharm; 2007 Jan; 328(1):65-71. PubMed ID: 17092668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro testing of thiolated poly(aspartic acid) from ophthalmic formulation aspects.
    Budai-Szű Cs M; Horvát G; Gyarmati B; Szilágyi BÁ; Szilágyi A; Csihi T; Berkó S; Szabó-Révész P; Mori M; Sandri G; Bonferoni MC; Caramella C; Csányi E
    Drug Dev Ind Pharm; 2016 Aug; 42(8):1241-6. PubMed ID: 26556306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ophthalmic delivery systems based on drug-polymer-polymer ionic ternary interaction: in vitro and in vivo characterization.
    Sandri G; Bonferoni MC; Chetoni P; Rossi S; Ferrari F; Ronchi C; Caramella C
    Eur J Pharm Biopharm; 2006 Jan; 62(1):59-69. PubMed ID: 16162402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vehicle effects in ophthalmic bioavailability: an evaluation of polymeric inserts containing pilocarpine.
    Saettone MF; Giannaccini B; Chetoni P; Galli G; Chiellini E
    J Pharm Pharmacol; 1984 Apr; 36(4):229-34. PubMed ID: 6144768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of hydroxypropyl beta-cyclodextrin on the corneal permeation of pilocarpine.
    Aktaş Y; Unlü N; Orhan M; Irkeç M; Hincal AA
    Drug Dev Ind Pharm; 2003 Feb; 29(2):223-30. PubMed ID: 12648019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inlfuence of high-viscosity vehicles on miotic effect of pilocarpine.
    Schoenwald RD; Ward RL; DeSantis LM; Roehrs RE
    J Pharm Sci; 1978 Sep; 67(9):1280-3. PubMed ID: 690834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of various concentrations of terpene-4-ol enhancer and carbopol-934 mucoadhesive upon the in vitro ocular transport and the in vivo intraocular pressure lowering effects of dorzolamide ophthalmic formulations using albino rabbits.
    Afouna MI; Khedr A; Abdel-Naim AB; Al-Marzoqi A
    J Pharm Sci; 2010 Jan; 99(1):119-27. PubMed ID: 19530071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gamma scintigraphic comparison of eyedrops containing pilocarpine in healthy volunteers.
    Meseguer G; Buri P; Plazonnet B; Rozier A; Gurny R
    J Ocul Pharmacol Ther; 1996; 12(4):481-8. PubMed ID: 8951684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Antiglaucoma ophthalmic agents with prolonged action based on macromolecular excipients. 1. In vitro studies].
    Pergande G; Keipert S
    Pharmazie; 1990 Jul; 45(8):582-6. PubMed ID: 2080203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.