BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10907502)

  • 1. Cholesterol as a singlet oxygen detector in biological systems.
    Girotti AW; Korytowski W
    Methods Enzymol; 2000; 319():85-100. PubMed ID: 10907502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodynamically generated 3-beta-hydroxy-5 alpha-cholest-6-ene-5- hydroperoxide: toxic reactivity in membranes and susceptibility to enzymatic detoxification.
    Geiger PG; Korytowski W; Girotti AW
    Photochem Photobiol; 1995 Sep; 62(3):580-7. PubMed ID: 8570716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Singlet oxygen intermediacy in the photodynamic action of membrane-bound hematoporphyrin derivative.
    Thomas JP; Hall RD; Girotti AW
    Cancer Lett; 1987 Jun; 35(3):295-302. PubMed ID: 2954632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Singlet oxygen adducts of cholesterol: photogeneration and reductive turnover in membrane systems.
    Korytowski W; Girotti AW
    Photochem Photobiol; 1999 Oct; 70(4):484-9. PubMed ID: 10546545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatographic separation and electrochemical determination of cholesterol hydroperoxides generated by photodynamic action.
    Korytowski W; Bachowski GJ; Girotti AW
    Anal Biochem; 1991 Aug; 197(1):149-56. PubMed ID: 1952058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoperoxidation of cholesterol in homogeneous solution, isolated membranes, and cells: comparison of the 5 alpha- and 6 beta-hydroperoxides as indicators of singlet oxygen intermediacy.
    Korytowski W; Bachowski GJ; Girotti AW
    Photochem Photobiol; 1992 Jul; 56(1):1-8. PubMed ID: 1508976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phthalocyanine-sensitized lipid peroxidation in cell membranes: use of cholesterol and azide as probes of primary photochemistry.
    Bachowski GJ; Ben-Hur E; Girotti AW
    J Photochem Photobiol B; 1991 Jun; 9(3-4):307-21. PubMed ID: 1919874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quenching of singlet oxygen by biomolecules from L1210 leukemia cells.
    Baker A; Kanofsky JR
    Photochem Photobiol; 1992 Apr; 55(4):523-8. PubMed ID: 1620729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of cholesterol and phospholipid hydroperoxides by high-performance liquid chromatography with mercury drop electrochemical detection.
    Korytowski W; Bachowski GJ; Girotti AW
    Anal Biochem; 1993 Aug; 213(1):111-9. PubMed ID: 8238862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodynamic action of merocyanine 540 on artificial and natural cell membranes: involvement of singlet molecular oxygen.
    Kalyanaraman B; Feix JB; Sieber F; Thomas JP; Girotti AW
    Proc Natl Acad Sci U S A; 1987 May; 84(9):2999-3003. PubMed ID: 3033673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental effects on cellular photosensitization: correlation of phototoxicity mechanism with transient absorption spectroscopy measurements.
    Aveline BM; Sattler RM; Redmond RW
    Photochem Photobiol; 1998 Jul; 68(1):51-62. PubMed ID: 9679451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved studies of singlet-oxygen emission from L1210 leukemia cells labeled with 5-(N-hexadecanoyl)amino eosin. A comparison with a one-dimensional model of singlet-oxygen diffusion and quenching.
    Baker A; Kanofsky JR
    Photochem Photobiol; 1993 Apr; 57(4):720-7. PubMed ID: 7685124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosensitization of membrane components.
    Santus R; Reyftmann JP
    Biochimie; 1986 Jun; 68(6):843-8. PubMed ID: 3092879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies.
    Krasnovsky AA
    Membr Cell Biol; 1998; 12(5):665-90. PubMed ID: 10379647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of singlet oxygen-derived hydroxyl radical adducts during merocyanine-540-mediated photosensitization: analysis by ESR-spin trapping and HPLC with electrochemical detection.
    Feix JB; Kalyanaraman B
    Arch Biochem Biophys; 1991 Nov; 291(1):43-51. PubMed ID: 1656888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of singlet oxygen on membrane sterols in the yeast Saccharomyces cerevisiae.
    Böcking T; Barrow KD; Netting AG; Chilcott TC; Coster HG; Höfer M
    Eur J Biochem; 2000 Mar; 267(6):1607-18. PubMed ID: 10712590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of singlet oxygen-specific versus radical-mediated lipid peroxidation in photosensitized oxidation of lipid bilayers: effect of beta-carotene and alpha-tocopherol.
    Stratton SP; Liebler DC
    Biochemistry; 1997 Oct; 36(42):12911-20. PubMed ID: 9335550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of singlet oxygen with DNA and biological consequences.
    Lutgerink JT; van den Akker E; Smeets I; Pachen D; van Dijk P; Aubry JM; Joenje H; Lafleur MV; Retèl J
    Mutat Res; 1992 Sep; 275(3-6):377-86. PubMed ID: 1383778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous intermembrane transfer of various cholesterol-derived hydroperoxide species: kinetic studies with model membranes and cells.
    Vila A; Korytowski W; Girotti AW
    Biochemistry; 2001 Dec; 40(48):14715-26. PubMed ID: 11724586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of photodynamic efficiency of cholesterol, selected cholesterol esters, metabolites and oxidation products on lipid peroxidation processes.
    Burakowska M; Sarna T; Pawlak AM
    Acta Biochim Pol; 2021 Nov; 68(4):527-533. PubMed ID: 34780130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.