These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 10907538)

  • 1. Reactive absorption of ozone: an assay for reaction rates of ozone with sulfhydryl compounds and with other biological molecules.
    Kanofsky JR; Sima PD
    Methods Enzymol; 2000; 319():505-12. PubMed ID: 10907538
    [No Abstract]   [Full Text] [Related]  

  • 2. Reactive absorption of ozone by aqueous biomolecule solutions: implications for the role of sulfhydryl compounds as targets for ozone.
    Kanofsky JR; Sima PD
    Arch Biochem Biophys; 1995 Jan; 316(1):52-62. PubMed ID: 7840660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Singlet oxygen chemiluminescence at gas-liquid interfaces: theoretical analysis with a one-dimensional model of singlet oxygen quenching and diffusion.
    Kanofsky JR; Sima PD
    Arch Biochem Biophys; 1994 Jul; 312(1):244-53. PubMed ID: 8031134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Singlet oxygen production from the reactions of ozone with biological molecules.
    Kanofsky JR; Sima P
    J Biol Chem; 1991 May; 266(14):9039-42. PubMed ID: 2026612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the reactivity between a ruthenium hexacationic prism and biological ligands.
    Paul LE; Therrien B; Furrer J
    Inorg Chem; 2012 Jan; 51(2):1057-67. PubMed ID: 22221272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Singlet-oxygen generation at gas-liquid interfaces: a significant artifact in the measurement of singlet-oxygen yields from ozone-biomolecule reactions.
    Kanofsky JR; Sima PD
    Photochem Photobiol; 1993 Sep; 58(3):335-40. PubMed ID: 8234465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and synthesis of heterobimetallic donor-acceptor chemodosimetric ensembles for the detection of sulfhydryl-containing amino acids and peptides.
    Chow CF; Lam MH; Sui H; Wong WY
    Dalton Trans; 2005 Feb; (3):475-84. PubMed ID: 15672191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between reactive oxygen species and sulfhydryl groups of cysteine, acetylcysteine and glutathione.
    Robak J; Gryglewski RJ
    Pol J Pharmacol; 1995; 47(1):59-62. PubMed ID: 7550550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly selective fluorescent probe for thiophenols.
    Jiang W; Fu Q; Fan H; Ho J; Wang W
    Angew Chem Int Ed Engl; 2007; 46(44):8445-8. PubMed ID: 17907175
    [No Abstract]   [Full Text] [Related]  

  • 10. Reduction of L-methionine selenoxide to seleno-L-methionine by endogenous thiols, ascorbic acid, or methimazole.
    Krause RJ; Elfarra AA
    Biochem Pharmacol; 2009 Jan; 77(1):134-40. PubMed ID: 18930712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactions of S-nitrosothiols with L-ascorbic acid in aqueous solution.
    Dasgupta TP; Smith JN
    Methods Enzymol; 2002; 359():219-29. PubMed ID: 12481574
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of ascorbic acid in dough: reaction of oxidized glutathione with reactive thiol groups of wheat glutelin.
    Koehler P
    J Agric Food Chem; 2003 Aug; 51(17):4954-9. PubMed ID: 12903952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Data on the histochemistry of glycogen, ascorbic acid and sulfhydryl groups in the myocardium during compensation and decompensation of the heart].
    KASABYIAN SS
    Arkh Patol; 1961; 23(1)():41-6. PubMed ID: 13751632
    [No Abstract]   [Full Text] [Related]  

  • 14. Kinetics of the ozonation of muconic acid in water.
    Beltrán FJ; Rodríguez EM; Romero MT
    J Hazard Mater; 2006 Dec; 138(3):534-8. PubMed ID: 16839686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of sulfhydryl compounds, carbohydrates, organic acids, and sodium sulfite on the formation of lysinoalanine in preserved egg.
    Luo XY; Tu YG; Zhao Y; Li JK; Wang JJ
    J Food Sci; 2014 Aug; 79(8):T1621-8. PubMed ID: 25047093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein and nonprotein cysteinyl thiol modification by N-acetyl-p-benzoquinone imine via a novel ipso adduct.
    Chen W; Shockcor JP; Tonge R; Hunter A; Gartner C; Nelson SD
    Biochemistry; 1999 Jun; 38(25):8159-66. PubMed ID: 10387061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative damage to extracellular fluids by ozone and possible protective effects of thiols.
    Van der Vliet A; O'Neil CA; Eiserich JP; Cross CE
    Arch Biochem Biophys; 1995 Aug; 321(1):43-50. PubMed ID: 7639534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple excited-state intramolecular proton transfer probe based on a new strategy of thiol-azide reaction for the selective sensing of cysteine and glutathione.
    Zhang D; Yang Z; Li H; Pei Z; Sun S; Xu Y
    Chem Commun (Camb); 2016 Jan; 52(4):749-52. PubMed ID: 26565523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method to quantify quinone reaction rates with wine relevant nucleophiles: a key to the understanding of oxidative loss of varietal thiols.
    Nikolantonaki M; Waterhouse AL
    J Agric Food Chem; 2012 Aug; 60(34):8484-91. PubMed ID: 22860891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in thiol and sulfide reactive probes.
    Wang K; Peng H; Wang B
    J Cell Biochem; 2014 Jun; 115(6):1007-22. PubMed ID: 24415273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.