BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 10907782)

  • 1. Metabolism of 1-acyl-2-oleoyl-sn-glycero-3-phosphoethanolamine in castor oil biosynthesis.
    Lin JT; Lew KM; Chen JM; Iwasaki Y; McKeon TA
    Lipids; 2000 May; 35(5):481-6. PubMed ID: 10907782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of triacylglycerols containing ricinoleate in castor microsomes using 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine as the substrate of oleoyl-12-hydroxylase.
    Lin JT; Woodruff CL; Lagouche OJ; McKeon TA; Stafford AE; Goodrich-Tanrikulu M; Singleton JA; Haney CA
    Lipids; 1998 Jan; 33(1):59-69. PubMed ID: 9470174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular species of PC and PE formed during castor oil biosynthesis.
    Lin JT; Chen JM; Chen P; Liao LP; McKeon TA
    Lipids; 2002 Oct; 37(10):991-5. PubMed ID: 12530559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm.
    Bafor M; Smith MA; Jonsson L; Stobart K; Stymne S
    Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):507-14. PubMed ID: 1747126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of oleoyl-12-hydroxylase in castor microsomes using the putative substrate, 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine.
    Lin JT; McKeon TA; Goodrich-Tanrikulu M; Stafford AE
    Lipids; 1996 Jun; 31(6):571-7. PubMed ID: 8784737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the incorporation of oleate and ricinoleate into phosphatidylcholines and acylglycerols in soybean microsomes.
    Lin JT; Ikeda MD; McKeon TA
    J Agric Food Chem; 2004 Mar; 52(5):1152-6. PubMed ID: 14995113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regiospecific analysis of diricinoleoylacylglycerols in castor (Ricinus communis L.) oil by electrospray ionization-mass spectrometry.
    Lin JT; Arcinas A
    J Agric Food Chem; 2007 Mar; 55(6):2209-16. PubMed ID: 17311402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biosynthesis of linoleate from oleoyl-CoA via oleoyl-phosphatidylcholine in microsomes of developing safflower seeds.
    Stymne S; Appelqvist LA
    Eur J Biochem; 1978 Oct; 90(2):223-9. PubMed ID: 710426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for an oleoyl phosphatidylcholine desaturase in microsomal preparations from cotyledons of safflower (Carthamus tinctorius) seed.
    Slack CR; Roughan PG; Browse J
    Biochem J; 1979 Jun; 179(3):649-56. PubMed ID: 475773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of ricinoleate in castor oil.
    McKeon TA; Lin JT; Stafford AE
    Adv Exp Med Biol; 1999; 464():37-47. PubMed ID: 10335384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular species of acylglycerols incorporating radiolabeled fatty acids from castor (Ricinus communis L.) microsomal incubations.
    Lin JT; Chen JM; Liao LP; McKeon TA
    J Agric Food Chem; 2002 Aug; 50(18):5077-81. PubMed ID: 12188611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine to 1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine. A novel pathway for the metabolism of ether-linked phosphoglycerides.
    Strum JC; Emilsson A; Wykle RL; Daniel LW
    J Biol Chem; 1992 Jan; 267(3):1576-83. PubMed ID: 1309787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a PLDĪ¶2 Homology Gene from Developing Castor Bean Endosperm.
    Tian B; Sun M; Jayawardana K; Wu D; Chen G
    Lipids; 2020 Sep; 55(5):537-548. PubMed ID: 32115716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delta 6- and delta 12-desaturase activities and phosphatidic acid formation in microsomal preparations from the developing cotyledons of common borage (Borago officinalis).
    Griffiths G; Stobart AK; Stymne S
    Biochem J; 1988 Jun; 252(3):641-7. PubMed ID: 3421914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of hepatic phosphatidylcholine synthesis in the developing guinea pig: contributions of acyl remodelling and of N-methylation of phosphatidylethanolamine.
    Burdge GC; Kelly FJ; Postle AD
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):67-73. PubMed ID: 8439299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of 1-palmitoyl and 1-stearoyl phosphatidylcholines from mixtures of acyl acceptors via acyl-CoA:1-acyl-sn-glycero-3-phosphorylcholine acyltransferase in liver microsomes.
    Holub BJ; MacNaughton JA; Piekarski J
    Biochim Biophys Acta; 1979 Mar; 572(3):413-22. PubMed ID: 435502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid remodeling of arachidonate from phosphatidylcholine to phosphatidylethanolamine pools during mast cell activation.
    Fonteh AN; Chilton FH
    J Immunol; 1992 Mar; 148(6):1784-91. PubMed ID: 1541818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity of rat hepatic phosphatidylethanolamine N-methyltransferase for molecular species of diacyl phosphatidylethanolamine.
    Ridgway ND; Vance DE
    J Biol Chem; 1988 Nov; 263(32):16856-63. PubMed ID: 3182818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Labelling of glycerolipids in the cotyledons of developing oilseeds by [1-14C] acetate and [2-3H] glycerol.
    Slack CR; Roughan PG; Balasingham N
    Biochem J; 1978 Feb; 170(2):421-33. PubMed ID: 580379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata.
    Bafor M; Jonsson L; Stobart AK; Stymne S
    Biochem J; 1990 Nov; 272(1):31-8. PubMed ID: 2264835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.