BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10907850)

  • 1. Sequence-based structural features between Kvlqt1 and Tapa1 on mouse chromosome 7F4/F5 corresponding to the Beckwith-Wiedemann syndrome region on human 11p15.5: long-stretches of unusually well conserved intronic sequences of kvlqt1 between mouse and human.
    Yatsuki H; Watanabe H; Hattori M; Joh K; Soejima H; Komoda H; Xin Z; Zhu X; Higashimoto K; Nishimura M; Kuratomi S; Sasaki H; Sakaki Y; Mukai T
    DNA Res; 2000 Jun; 7(3):195-206. PubMed ID: 10907850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids.
    Mitsuya K; Meguro M; Lee MP; Katoh M; Schulz TC; Kugoh H; Yoshida MA; Niikawa N; Feinberg AP; Oshimura M
    Hum Mol Genet; 1999 Jul; 8(7):1209-17. PubMed ID: 10369866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome.
    Smilinich NJ; Day CD; Fitzpatrick GV; Caldwell GM; Lossie AC; Cooper PR; Smallwood AC; Joyce JA; Schofield PN; Reik W; Nicholls RD; Weksberg R; Driscoll DJ; Maher ER; Shows TB; Higgins MJ
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):8064-9. PubMed ID: 10393948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting.
    Lee MP; DeBaun MR; Mitsuya K; Galonek HL; Brandenburg S; Oshimura M; Feinberg AP
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):5203-8. PubMed ID: 10220444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Syntenic organization of the mouse distal chromosome 7 imprinting cluster and the Beckwith-Wiedemann syndrome region in chromosome 11p15.5.
    Paulsen M; Davies KR; Bowden LM; Villar AJ; Franck O; Fuermann M; Dean WL; Moore TF; Rodrigues N; Davies KE; Hu RJ; Feinberg AP; Maher ER; Reik W; Walter J
    Hum Mol Genet; 1998 Jul; 7(7):1149-59. PubMed ID: 9618174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imprinting of mouse Kvlqt1 is developmentally regulated.
    Gould TD; Pfeifer K
    Hum Mol Genet; 1998 Mar; 7(3):483-7. PubMed ID: 9467008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements.
    Lee MP; Hu RJ; Johnson LA; Feinberg AP
    Nat Genet; 1997 Feb; 15(2):181-5. PubMed ID: 9020845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relaxation of insulin-like growth factor 2 imprinting and discordant methylation at KvDMR1 in two first cousins affected by Beckwith-Wiedemann and Klippel-Trenaunay-Weber syndromes.
    Sperandeo MP; Ungaro P; Vernucci M; Pedone PV; Cerrato F; Perone L; Casola S; Cubellis MV; Bruni CB; Andria G; Sebastio G; Riccio A
    Am J Hum Genet; 2000 Mar; 66(3):841-7. PubMed ID: 10712200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence and functional comparison in the Beckwith-Wiedemann region: implications for a novel imprinting centre and extended imprinting.
    Engemann S; Strödicke M; Paulsen M; Franck O; Reinhardt R; Lane N; Reik W; Walter J
    Hum Mol Genet; 2000 Nov; 9(18):2691-706. PubMed ID: 11063728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of MTR1, a novel gene with homology to melastatin (MLSN1) and the trp gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression.
    Prawitt D; Enklaar T; Klemm G; Gärtner B; Spangenberg C; Winterpacht A; Higgins M; Pelletier J; Zabel B
    Hum Mol Genet; 2000 Jan; 9(2):203-16. PubMed ID: 10607831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome.
    Horike S; Mitsuya K; Meguro M; Kotobuki N; Kashiwagi A; Notsu T; Schulz TC; Shirayoshi Y; Oshimura M
    Hum Mol Genet; 2000 Sep; 9(14):2075-83. PubMed ID: 10958646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome.
    Gaston V; Le Bouc Y; Soupre V; Burglen L; Donadieu J; Oro H; Audry G; Vazquez MP; Gicquel C
    Eur J Hum Genet; 2001 Jun; 9(6):409-18. PubMed ID: 11436121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 1-Mb physical map and PAC contig of the imprinted domain in 11p15.5 that contains TAPA1 and the BWSCR1/WT2 region.
    Reid LH; Davies C; Cooper PR; Crider-Miller SJ; Sait SN; Nowak NJ; Evans G; Stanbridge EJ; deJong P; Shows TB; Weissman BE; Higgins MJ
    Genomics; 1997 Aug; 43(3):366-75. PubMed ID: 9268640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZAC, LIT1 (KCNQ1OT1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome.
    Arima T; Kamikihara T; Hayashida T; Kato K; Inoue T; Shirayoshi Y; Oshimura M; Soejima H; Mukai T; Wake N
    Nucleic Acids Res; 2005; 33(8):2650-60. PubMed ID: 15888726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain regulation of imprinting cluster in Kip2/Lit1 subdomain on mouse chromosome 7F4/F5: large-scale DNA methylation analysis reveals that DMR-Lit1 is a putative imprinting control region.
    Yatsuki H; Joh K; Higashimoto K; Soejima H; Arai Y; Wang Y; Hatada I; Obata Y; Morisaki H; Zhang Z; Nakagawachi T; Satoh Y; Mukai T
    Genome Res; 2002 Dec; 12(12):1860-70. PubMed ID: 12466290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low frequency of p57KIP2 mutation in Beckwith-Wiedemann syndrome.
    Lee MP; DeBaun M; Randhawa G; Reichard BA; Elledge SJ; Feinberg AP
    Am J Hum Genet; 1997 Aug; 61(2):304-9. PubMed ID: 9311734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and genomic characterisation of cryptic chromosomal alterations leading to paternal duplication of the 11p15.5 Beckwith-Wiedemann region.
    Russo S; Finelli P; Recalcati MP; Ferraiuolo S; Cogliati F; Dalla Bernardina B; Tibiletti MG; Agosti M; Sala M; Bonati MT; Larizza L
    J Med Genet; 2006 Aug; 43(8):e39. PubMed ID: 16882733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor development in the Beckwith-Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1.
    Weksberg R; Nishikawa J; Caluseriu O; Fei YL; Shuman C; Wei C; Steele L; Cameron J; Smith A; Ambus I; Li M; Ray PN; Sadowski P; Squire J
    Hum Mol Genet; 2001 Dec; 10(26):2989-3000. PubMed ID: 11751681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain-dependent developmental relaxation of imprinting of an endogenous mouse gene, Kvlqt1.
    Jiang S; Hemann MA; Lee MP; Feinberg AP
    Genomics; 1998 Nov; 53(3):395-9. PubMed ID: 9799609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster.
    Caspary T; Cleary MA; Baker CC; Guan XJ; Tilghman SM
    Mol Cell Biol; 1998 Jun; 18(6):3466-74. PubMed ID: 9584186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.