BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 10907876)

  • 1. AOTF Raman spectrometer for remote detection of explosives.
    Gupta N; Dahmani R
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 Jul; 56A(8):1453-6. PubMed ID: 10907876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of explosives with two-dimensional ultraviolet resonance Raman spectroscopy.
    Comanescu G; Manka CK; Grun J; Nikitin S; Zabetakis D
    Appl Spectrosc; 2008 Aug; 62(8):833-9. PubMed ID: 18702854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Explosives Using Differential Laser-Induced Perturbation Spectroscopy with a Raman-based Probe.
    Oztekin EK; Burton DJ; Hahn DW
    Appl Spectrosc; 2016 Apr; 70(4):676-87. PubMed ID: 26865581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The determination of nitroaromatics and nitramines in ground and drinking water by wide-bore capillary gas chromatography.
    Hable M; Stern C; Asowata C; Williams K
    J Chromatogr Sci; 1991 Apr; 29(4):131-5. PubMed ID: 1874908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence quenching as an indirect detection method for nitrated explosives.
    Goodpaster JV; McGuffin VL
    Anal Chem; 2001 May; 73(9):2004-11. PubMed ID: 11354482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of explosives and their degradation products in soil environments.
    Halasz A; Groom C; Zhou E; Paquet L; Beaulieu C; Deschamps S; Corriveau A; Thiboutot S; Ampleman G; Dubois C; Hawari J
    J Chromatogr A; 2002 Jul; 963(1-2):411-8. PubMed ID: 12187997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana.
    Clark B; Boopathy R
    J Hazard Mater; 2007 May; 143(3):643-8. PubMed ID: 17289260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment.
    Sharma SK; Misra AK; Sharma B
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2404-12. PubMed ID: 16029864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaching of contaminated leaves following uptake and phytoremediation of RDX, HMX, and TNT by poplar.
    Yoon JM; Van Aken B; Schnoor JL
    Int J Phytoremediation; 2006; 8(1):81-94. PubMed ID: 16615309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument.
    Carter JC; Angel SM; Lawrence-Snyder M; Scaffidi J; Whipple RE; Reynolds JG
    Appl Spectrosc; 2005 Jun; 59(6):769-75. PubMed ID: 16053543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of post-explosive samples for common high explosive components by MECC.
    Hamels S; De Bisschop HC
    Biomed Chromatogr; 1998; 12(3):107-8. PubMed ID: 9646900
    [No Abstract]   [Full Text] [Related]  

  • 12. Trace explosive detection in aqueous samples by solid-phase extraction ion mobility spectrometry (SPE-IMS).
    Buxton TL; Harrington Pde B
    Appl Spectrosc; 2003 Feb; 57(2):223-32. PubMed ID: 14610961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry-mass spectrometry.
    Lee J; Park S; Cho SG; Goh EM; Lee S; Koh SS; Kim J
    Talanta; 2014 Mar; 120():64-70. PubMed ID: 24468343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclodextrin-assisted capillary electrophoresis for determination of the cyclic nitramine explosives RDX, HMX and CL-20 comparison with high-performance liquid chromatography.
    Groom CA; Halasz A; Paquet L; D'Cruz P; Hawari J
    J Chromatogr A; 2003 May; 999(1-2):17-22. PubMed ID: 12885047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic degradation of explosives contaminated water.
    Lee SJ; Son HS; Lee HK; Zoh KD
    Water Sci Technol; 2002; 46(11-12):139-45. PubMed ID: 12523745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of explosives in hair.
    Oxley JC; Smith JL; Kirschenbaum LJ; Shinde KP; Marimganti S
    J Forensic Sci; 2005 Jul; 50(4):826-31. PubMed ID: 16078483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-line coupling capillary electrochromatography with amperometric detection for analysis of explosive compounds.
    Hilmi A; Luong JH
    Electrophoresis; 2000 Apr; 21(7):1395-404. PubMed ID: 10826686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A case study of contaminants on military ranges: Camp Edwards, Massachusetts, USA.
    Clausen J; Robb J; Curry D; Korte N
    Environ Pollut; 2004 May; 129(1):13-21. PubMed ID: 14749065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of the cyclic nitramine explosives hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX) and octahydro- 1,3,5,7-tetranitro- 1,3,5,7-tetrazine (HMX) and their degradation products in soil environments.
    Groom CA; Beaudet S; Halasz A; Paquet L; Hawari J
    J Chromatogr A; 2001 Feb; 909(1):53-60. PubMed ID: 11218141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.