These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 10908339)

  • 1. Recognition of protein coding genes in the yeast genome at better than 95% accuracy based on the Z curve.
    Zhang CT; Wang J
    Nucleic Acids Res; 2000 Jul; 28(14):2804-14. PubMed ID: 10908339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin and properties of non-coding ORFs in the yeast genome.
    Mackiewicz P; Kowalczuk M; Gierlik A; Dudek MR; Cebrat S
    Nucleic Acids Res; 1999 Sep; 27(17):3503-9. PubMed ID: 10446240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using a Euclid distance discriminant method to find protein coding genes in the yeast genome.
    Zhang CT; Wang J; Zhang R
    Comput Chem; 2002 Feb; 26(3):195-206. PubMed ID: 11868909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of protein coding genes in the yeast genome based on the relative-entropy of DNA.
    Li C; Helal N; Wang J
    Comb Chem High Throughput Screen; 2006 Jan; 9(1):49-54. PubMed ID: 16454686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How many protein-coding genes are there in the Saccharomyces cerevisiae genome?
    Mackiewicz P; Kowalczuk M; Mackiewicz D; Nowicka A; Dudkiewicz M; Laszkiewicz A; Dudek MR; Cebrat S
    Yeast; 2002 May; 19(7):619-29. PubMed ID: 11967832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene recognition from questionable ORFs in bacterial and archaeal genomes.
    Chen LL; Zhang CT
    J Biomol Struct Dyn; 2003 Aug; 21(1):99-109. PubMed ID: 12854962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total number of coding open reading frames in the yeast genome.
    Kowalczuk M; Mackiewicz P; Gierlik A; Dudek MR; Cebrat S
    Yeast; 1999 Aug; 15(11):1031-4. PubMed ID: 10455227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re-annotation of protein-coding genes in the genome of saccharomyces cerevisiae based on support vector machines.
    Lin D; Yin X; Wang X; Zhou P; Guo FB
    PLoS One; 2013; 8(7):e64477. PubMed ID: 23874379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A small reservoir of disabled ORFs in the yeast genome and its implications for the dynamics of proteome evolution.
    Harrison P; Kumar A; Lan N; Echols N; Snyder M; Gerstein M
    J Mol Biol; 2002 Feb; 316(3):409-19. PubMed ID: 11866506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of mRNA lengths in Saccharomyces cerevisiae.
    Hurowitz EH; Brown PO
    Genome Biol; 2003; 5(1):R2. PubMed ID: 14709174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of protein-coding genes in the genome of Vibrio cholerae with more than 98% accuracy using occurrence frequencies of single nucleotides.
    Wang J; Zhang CT
    Eur J Biochem; 2001 Aug; 268(15):4261-8. PubMed ID: 11488920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a yeast strain deleted for the TRP1 promoter and coding region that enhances the efficiency of the polymerase chain reaction-disruption method.
    Baudin-Baillieu A; Guillemet E; Cullin C; Lacroute F
    Yeast; 1997 Mar; 13(4):353-6. PubMed ID: 9133738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene relics in the genome of the yeast Saccharomyces cerevisiae.
    Lafontaine I; Fischer G; Talla E; Dujon B
    Gene; 2004 Jun; 335():1-17. PubMed ID: 15194185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computer filtering method to drive out tiny genes from the yeast genome.
    Barry C; Fichant G; Kalogeropoulos A; Quentin Y
    Yeast; 1996 Sep; 12(11):1163-78. PubMed ID: 8896282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sequence of a 17,933 bp segment of Saccharomyces cerevisiae chromosome XIV contains the RHO2, TOP2, MKT1 and END3 genes and five new open reading frames.
    Soler-Mira A; Saiz JE; Ballesta JP; Remacha M
    Yeast; 1996 Apr; 12(5):485-91. PubMed ID: 8740422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the genetic code in generating new coding sequences inside existing genes.
    Cebrat S; Mackiewicz P; Dudek MR
    Biosystems; 1998 Feb; 45(2):165-76. PubMed ID: 9544406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sequence of a 30 kb fragment on the left arm of chromosome XV from Saccharomyces cerevisiae reveals 15 open reading frames, five of which correspond to previously identified genes.
    Sterky F; Holmberg A; Pettersson B; Uhlén M
    Yeast; 1996 Sep; 12(10B Suppl):1091-5. PubMed ID: 8896276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sequence of a 36 kb segment on the left arm of yeast chromosome X identifies 24 open reading frames including NUC1, PRP21 (SPP91), CDC6, CRY2, the gene for S24, a homologue to the aconitase gene ACO1 and two homologues to chromosome III genes.
    Purnelle B; Coster F; Goffeau A
    Yeast; 1994 Sep; 10(9):1235-49. PubMed ID: 7754713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The DNA sequence of cosmid 14-5 from chromosome XIV reveals 21 open reading frames including a novel gene encoding a globin-like domain.
    Pandolfo D; De Antoni A; Lanfranchi G; Valle G
    Yeast; 1996 Sep; 12(10B Suppl):1071-6. PubMed ID: 8896273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequencing of chromosome I from Saccharomyces cerevisiae: analysis of a 32 kb region between the LTE1 and SPO7 genes.
    Ouellette BF; Clark MW; Keng T; Storms RK; Zhong W; Zeng B; Fortin N; Delaney S; Barton A; Kaback DB
    Genome; 1993 Feb; 36(1):32-42. PubMed ID: 8458570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.