These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 10908572)

  • 1. Rad51 accumulation at sites of DNA damage and in postreplicative chromatin.
    Tashiro S; Walter J; Shinohara A; Kamada N; Cremer T
    J Cell Biol; 2000 Jul; 150(2):283-91. PubMed ID: 10908572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage.
    Paull TT; Rogakou EP; Yamazaki V; Kirchgessner CU; Gellert M; Bonner WM
    Curr Biol; 2000 Jul 27-Aug 10; 10(15):886-95. PubMed ID: 10959836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes.
    Haaf T; Golub EI; Reddy G; Radding CM; Ward DC
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):2298-302. PubMed ID: 7892263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-nuclear localization of Rad51 in response to DNA damage.
    Mladenov E; Anachkova B; Tsaneva I
    Genes Cells; 2006 May; 11(5):513-24. PubMed ID: 16629903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The BRCA2-interacting protein BCCIP functions in RAD51 and BRCA2 focus formation and homologous recombinational repair.
    Lu H; Guo X; Meng X; Liu J; Allen C; Wray J; Nickoloff JA; Shen Z
    Mol Cell Biol; 2005 Mar; 25(5):1949-57. PubMed ID: 15713648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RAD51 localization and activation following DNA damage.
    Tarsounas M; Davies AA; West SC
    Philos Trans R Soc Lond B Biol Sci; 2004 Jan; 359(1441):87-93. PubMed ID: 15065660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BRCA2-dependent and independent formation of RAD51 nuclear foci.
    Tarsounas M; Davies D; West SC
    Oncogene; 2003 Feb; 22(8):1115-23. PubMed ID: 12606939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA damage induce gamma-tubulin-RAD51 nuclear complexes in mammalian cells.
    Lesca C; Germanier M; Raynaud-Messina B; Pichereaux C; Etievant C; Emond S; Burlet-Schiltz O; Monsarrat B; Wright M; Defais M
    Oncogene; 2005 Aug; 24(33):5165-72. PubMed ID: 15897881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RAD51 foci formation in response to DNA damage is modulated by TIP49.
    Gospodinov A; Tsaneva I; Anachkova B
    Int J Biochem Cell Biol; 2009 Apr; 41(4):925-33. PubMed ID: 18834951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xrcc3 is recruited to DNA double strand breaks early and independent of Rad51.
    Forget AL; Bennett BT; Knight KL
    J Cell Biochem; 2004 Oct; 93(3):429-36. PubMed ID: 15372620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequestration of mammalian Rad51-recombination protein into micronuclei.
    Haaf T; Raderschall E; Reddy G; Ward DC; Radding CM; Golub EI
    J Cell Biol; 1999 Jan; 144(1):11-20. PubMed ID: 9885240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reorganization of damaged chromatin by the exchange of histone variant H2A.Z-2.
    Nishibuchi I; Suzuki H; Kinomura A; Sun J; Liu NA; Horikoshi Y; Shima H; Kusakabe M; Harata M; Fukagawa T; Ikura T; Ishida T; Nagata Y; Tashiro S
    Int J Radiat Oncol Biol Phys; 2014 Jul; 89(4):736-44. PubMed ID: 24969791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of higher-order nuclear Rad51 structures is functionally linked to p21 expression and protection from DNA damage-induced apoptosis.
    Raderschall E; Bazarov A; Cao J; Lurz R; Smith A; Mann W; Ropers HH; Sedivy JM; Golub EI; Fritz E; Haaf T
    J Cell Sci; 2002 Jan; 115(Pt 1):153-64. PubMed ID: 11801733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin-bound PCNA complex formation triggered by DNA damage occurs independent of the ATM gene product in human cells.
    Balajee AS; Geard CR
    Nucleic Acids Res; 2001 Mar; 29(6):1341-51. PubMed ID: 11239001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ visualization of DNA double-strand break repair in human fibroblasts.
    Nelms BE; Maser RS; MacKay JF; Lagally MG; Petrini JH
    Science; 1998 Apr; 280(5363):590-2. PubMed ID: 9554850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage.
    Shima H; Suzuki H; Sun J; Kono K; Shi L; Kinomura A; Horikoshi Y; Ikura T; Ikura M; Kanaar R; Igarashi K; Saitoh H; Kurumizaka H; Tashiro S
    J Cell Sci; 2013 Nov; 126(Pt 22):5284-92. PubMed ID: 24046452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinational repair in yeast: functional interactions between Rad51 and Rad54 proteins.
    Clever B; Interthal H; Schmuckli-Maurer J; King J; Sigrist M; Heyer WD
    EMBO J; 1997 May; 16(9):2535-44. PubMed ID: 9171366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the number of RAD51 molecules in different human cell lines.
    Foertsch F; Kache T; Drube S; Biskup C; Nasheuer HP; Melle C
    Cell Cycle; 2019 Dec; 18(24):3581-3588. PubMed ID: 31731884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired DNA damage-induced nuclear Rad51 foci formation uniquely characterizes Fanconi anemia group D1.
    Godthelp BC; Artwert F; Joenje H; Zdzienicka MZ
    Oncogene; 2002 Jul; 21(32):5002-5. PubMed ID: 12118380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of the Fanconi anemia/BRCA pathway and recombination repair in the cellular response to solar ultraviolet light.
    Dunn J; Potter M; Rees A; RĂ¼nger TM
    Cancer Res; 2006 Dec; 66(23):11140-7. PubMed ID: 17145857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.