These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 10909767)

  • 21. Induction of cytokine messenger RNA and secretion in alveolar macrophages and blood monocytes from patients with lung cancer receiving granulocyte-macrophage colony-stimulating factor therapy.
    Thomassen MJ; Ahmad M; Barna BP; Antal J; Wiedemann HP; Meeker DP; Klein J; Bauer L; Gibson V; Andresen S
    Cancer Res; 1991 Feb; 51(3):857-62. PubMed ID: 1988125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transformation of cultured human monocytes by peroxidized low-density lipoprotein.
    Kanazawa T; Yu S; Osanai T; Uemura T; Onodera K; Metoki H; Oike Y
    Pathobiology; 1995; 63(3):143-7. PubMed ID: 8821630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mesangial matrix-activated monocytes express functional scavenger receptors and accumulate intracellular lipid.
    Rahman EU; Ruan XZ; Chana RS; Brunskill NJ; Gaya J; Powis SH; Varghese Z; Moorhead JF; Wheeler DC
    Nephrol Dial Transplant; 2008 Jun; 23(6):1876-85. PubMed ID: 18281317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PPARgamma is not a critical mediator of primary monocyte differentiation or foam cell formation.
    Patel L; Charlton SJ; Marshall IC; Moore GB; Coxon P; Moores K; Clapham JC; Newman SJ; Smith SA; Macphee CH
    Biochem Biophys Res Commun; 2002 Jan; 290(2):707-12. PubMed ID: 11785957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monocyte differentiation in intestine-like macrophage phenotype induced by epithelial cells.
    Spöttl T; Hausmann M; Kreutz M; Peuker A; Vogl D; Schölmerich J; Falk W; Andreesen R; Andus T; Herfarth H; Rogler G
    J Leukoc Biol; 2001 Aug; 70(2):241-51. PubMed ID: 11493616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased thrombogenic potential of human monocyte-derived macrophages spontaneously transformed into foam cells.
    Colli S; Lalli M; Risè P; Mussoni L; Eligini S; Galli C; Tremoli E
    Thromb Haemost; 1999 Apr; 81(4):576-81. PubMed ID: 10235442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages.
    Ouchi N; Kihara S; Arita Y; Nishida M; Matsuyama A; Okamoto Y; Ishigami M; Kuriyama H; Kishida K; Nishizawa H; Hotta K; Muraguchi M; Ohmoto Y; Yamashita S; Funahashi T; Matsuzawa Y
    Circulation; 2001 Feb; 103(8):1057-63. PubMed ID: 11222466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lentiviral vector-mediated siRNA knockdown of SR-PSOX inhibits foam cell formation in vitro.
    Zhang L; Liu HJ; Li TJ; Yang Y; Guo XL; Wu MC; Rui YC; Wei LX
    Acta Pharmacol Sin; 2008 Jul; 29(7):847-52. PubMed ID: 18565283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ionizing radiation induces macrophage foam cell formation and aggregation through JNK-dependent activation of CD36 scavenger receptors.
    Katayama I; Hotokezaka Y; Matsuyama T; Sumi T; Nakamura T
    Int J Radiat Oncol Biol Phys; 2008 Mar; 70(3):835-46. PubMed ID: 18262097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Foam cells and the pathogenesis of kidney disease.
    Eom M; Hudkins KL; Alpers CE
    Curr Opin Nephrol Hypertens; 2015 May; 24(3):245-51. PubMed ID: 25887903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 4-1BBL signaling promotes cell proliferation through reprogramming of glucose metabolism in monocytes/macrophages.
    Tu TH; Kim CS; Nam-Goong IS; Nam CW; Kim YI; Goto T; Kawada T; Park T; Yoon Park JH; Ryoo ZY; Park JW; Choi HS; Yu R
    FEBS J; 2015 Apr; 282(8):1468-80. PubMed ID: 25691217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homocysteine-mediated cholesterol efflux via ABCA1 and ACAT1 DNA methylation in THP-1 monocyte-derived foam cells.
    Liang Y; Yang X; Ma L; Cai X; Wang L; Yang C; Li G; Zhang M; Sun W; Jiang Y
    Acta Biochim Biophys Sin (Shanghai); 2013 Mar; 45(3):220-8. PubMed ID: 23305686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cholesteryl ester hydrolase in human monocyte/macrophage: cloning, sequencing, and expression of full-length cDNA.
    Ghosh S
    Physiol Genomics; 2000 Jan; 2(1):1-8. PubMed ID: 11015575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conversion of human M-CSF macrophages into foam cells reduces their proinflammatory responses to classical M1-polarizing activation.
    da Silva RF; Lappalainen J; Lee-Rueckert M; Kovanen PT
    Atherosclerosis; 2016 May; 248():170-8. PubMed ID: 27038418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monocyte recruitment and foam cell formation in atherosclerosis.
    Bobryshev YV
    Micron; 2006; 37(3):208-22. PubMed ID: 16360317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [PPARγ signal transduction pathway in the foam cell formation induced by visfatin].
    Kang J; Cheng B; Jiang L
    Sheng Li Xue Bao; 2010 Oct; 62(5):427-32. PubMed ID: 20945045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene expression profiles of U937 human macrophages exposed to Chlamydophila pneumoniae and/or low density lipoprotein in five study models using differential display and real-time RT-PCR.
    Lim WC; Chow VT
    Biochimie; 2006; 88(3-4):367-77. PubMed ID: 16466844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MiR-9 reduces human acyl-coenzyme A:cholesterol acyltransferase-1 to decrease THP-1 macrophage-derived foam cell formation.
    Xu J; Hu G; Lu M; Xiong Y; Li Q; Chang CC; Song B; Chang T; Li B
    Acta Biochim Biophys Sin (Shanghai); 2013 Nov; 45(11):953-62. PubMed ID: 24028971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence of macrophage foam cell formation by very low-density lipoprotein receptor: interferon-gamma inhibition of very low-density lipoprotein receptor expression and foam cell formation in macrophages.
    Kosaka S; Takahashi S; Masamura K; Kanehara H; Sakai J; Tohda G; Okada E; Oida K; Iwasaki T; Hattori H; Kodama T; Yamamoto T; Miyamori I
    Circulation; 2001 Feb; 103(8):1142-7. PubMed ID: 11222479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High Uric Acid Activates the ROS-AMPK Pathway, Impairs CD68 Expression and Inhibits OxLDL-Induced Foam-Cell Formation in a Human Monocytic Cell Line, THP-1.
    Luo C; Lian X; Hong L; Zou J; Li Z; Zhu Y; Huang T; Zhang Y; Hu Y; Yuan H; Wen T; Zhuang W; Cai B; Zhang X; Hisatome I; Yamamoto T; Huang J; Cheng J
    Cell Physiol Biochem; 2016; 40(3-4):538-548. PubMed ID: 27889764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.