BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10909927)

  • 41. Spatial reconstruction of coronary arteries from angiographic images.
    Guggenheim N; Doriot PA; Dorsaz PA; Descouts P; Rutishauser W
    Phys Med Biol; 1991 Jan; 36(1):99-110. PubMed ID: 2006217
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Human coronary arteries: projection angiograms reconstructed from breath-hold two-dimensional MR images.
    Edelman RR; Manning WJ; Pearlman J; Li W
    Radiology; 1993 Jun; 187(3):719-22. PubMed ID: 8497620
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of optimal angiographic viewing angles: basic principles and evaluation study.
    Dumay AM; Reiber JC; Gerbrands JJ
    IEEE Trans Med Imaging; 1994; 13(1):13-24. PubMed ID: 18218480
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A quantitative analysis of 3-D coronary modeling from two or more projection images.
    Movassaghi B; Rasche V; Grass M; Viergever MA; Niessen WJ
    IEEE Trans Med Imaging; 2004 Dec; 23(12):1517-31. PubMed ID: 15575409
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A multi-stage neural network approach for coronary 3D reconstruction from uncalibrated X-ray angiography images.
    Iyer K; Nallamothu BK; Figueroa CA; Nadakuditi RR
    Sci Rep; 2023 Oct; 13(1):17603. PubMed ID: 37845232
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vivo 3D modeling of the femoropopliteal artery in human subjects based on x-ray angiography: methodology and validation.
    Klein AJ; Casserly IP; Messenger JC; Carroll JD; Chen SY
    Med Phys; 2009 Feb; 36(2):289-310. PubMed ID: 19291969
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adaptive approach to accurate analysis of small-diameter vessels in cineangiograms.
    Sonka M; Reddy GK; Winniford MD; Collins SM
    IEEE Trans Med Imaging; 1997 Feb; 16(1):87-95. PubMed ID: 9050411
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinematic and deformation analysis of 4-D coronary arterial trees reconstructed from cine angiograms.
    Chen SY; Carroll JD
    IEEE Trans Med Imaging; 2003 Jun; 22(6):710-21. PubMed ID: 12872946
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-dimensional coronary arteriography.
    Rougée A; Picard C; Saint-Félix D; Trousset Y; Moll T; Amiel M
    Int J Card Imaging; 1994 Mar; 10(1):67-70. PubMed ID: 8021533
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-dimensional coronary angiography.
    Klein JL; Peifer JW; Garcia EV; Cooke CD; Folks R; Ezquerra N; King SB
    Am J Card Imaging; 1993 Sep; 7(3):187-94. PubMed ID: 10146374
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimum angiographic visualization of coronary segments using computer-aided 3D-reconstruction from biplane views.
    Solzbach U; Oser U; Rombach M; Wollschläger H; Just H
    Comput Biomed Res; 1994 Jun; 27(3):178-98. PubMed ID: 8070254
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A method for coronary bifurcation centerline reconstruction from angiographic images based on focalization optimization.
    Montin E; Migliori S; Chiastra C; Credi C; Fedele R; Aurigemma C; Levi M; Burzotta F; Migliavacca F; Mainardi LT
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4165-4168. PubMed ID: 28269200
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Better visualization of the asymmetric lesion in coronary arteriography utilizing cranial and caudal angulated projections.
    Aldridge HE
    Chest; 1977 Apr; 71(4):502-7. PubMed ID: 856548
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Knowledge-based system for the three-dimensional reconstruction of blood vessels from two angiographic projections.
    Delaere D; Smets C; Suetens P; Marchal G; Van de Werf F
    Med Biol Eng Comput; 1991 Nov; 29(6):NS27-36. PubMed ID: 1813743
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An expert system for the labeling and 3D reconstruction of the coronary arteries from two projections.
    Smets C; van de Werf F; Suetens P; Oosterlinck A
    Int J Card Imaging; 1990; 5(2-3):145-54. PubMed ID: 2230292
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An essential view in coronary arteriography.
    Nath PH; Velasquez G; Castaneda-Zuniga WR; Zollikofer C; Formanek A; Amplatz K
    Circulation; 1979 Jul; 60(1):101-6. PubMed ID: 445712
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantitative Analysis of Deformable Model-Based 3-D Reconstruction of Coronary Artery From Multiple Angiograms.
    Cong W; Yang J; Ai D; Chen Y; Liu Y; Wang Y
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):2079-90. PubMed ID: 25807562
    [TBL] [Abstract][Full Text] [Related]  

  • 58. External force back-projective composition and globally deformable optimization for 3-D coronary artery reconstruction.
    Yang J; Cong W; Chen Y; Fan J; Liu Y; Wang Y
    Phys Med Biol; 2014 Feb; 59(4):975-1003. PubMed ID: 24503518
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three-dimensional reconstruction of the coronary arteries using a priori knowledge.
    Windyga P; Garreau M; Shah M; Le Breton H; Coatrieux JL
    Med Biol Eng Comput; 1998 Mar; 36(2):158-64. PubMed ID: 9684454
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy back-projective composition for 3-D coronary artery reconstruction.
    Cong W; Yang J; Liu Y; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5151-4. PubMed ID: 24110895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.