BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 10910103)

  • 1. Effect of monocular deprivation on NMDAR1 immunostaining in ocular dominance columns of the marmoset Callithrix jacchus.
    Fonta C; Chappert C; Imbert M
    Vis Neurosci; 2000; 17(3):345-52. PubMed ID: 10910103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional architecture of area 17 in normal and monocularly deprived marmosets (Callithrix jacchus).
    Sengpiel F; Troilo D; Kind PC; Graham B; Blakemore C
    Vis Neurosci; 1996; 13(1):145-60. PubMed ID: 8730996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of ocular dominance columns in a New World primate by means of monocular deprivation.
    DeBruyn EJ; Casagrande VA
    Brain Res; 1981 Mar; 207(2):453-8. PubMed ID: 6162527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-methyl-D-aspartate subunit R1 involvement in the postnatal organization of the primary visual cortex of Callithrix jacchus.
    Fonta C; Chappert C; Imbert M
    J Comp Neurol; 1997 Sep; 386(2):260-76. PubMed ID: 9295151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patchy distribution of NMDAR1 subunit immunoreactivity in developing visual cortex.
    Trepel C; Duffy KR; Pegado VD; Murphy KM
    J Neurosci; 1998 May; 18(9):3404-15. PubMed ID: 9547247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex.
    Horton JC; Hocking DR
    J Neurosci; 1997 May; 17(10):3684-709. PubMed ID: 9133391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-dependent regulation of NMDAR1 immunoreactivity in the developing visual cortex.
    Catalano SM; Chang CK; Shatz CJ
    J Neurosci; 1997 Nov; 17(21):8376-90. PubMed ID: 9334411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ocular dominance columns in V1 are more susceptible than associated callosal patches to imbalance of eye input during precritical and critical periods.
    Olavarria JF; Laing RJ; Andelin AK
    J Comp Neurol; 2021 Aug; 529(11):2883-2910. PubMed ID: 33683706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monocular inhibition reveals temporal and spatial changes in gene expression in the primary visual cortex of marmoset.
    Nakagami Y; Watakabe A; Yamamori T
    Front Neural Circuits; 2013; 7():43. PubMed ID: 23576954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distributions of synaptic vesicle proteins and GAD65 in deprived and nondeprived ocular dominance columns in layer IV of kitten primary visual cortex are unaffected by monocular deprivation.
    Silver MA; Stryker MP
    J Comp Neurol; 2000 Jul; 422(4):652-64. PubMed ID: 10861531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experience-dependent development of NMDAR1 subunit expression in the lateral geniculate nucleus.
    Fava MA; Duffy KR; Murphy KM
    Vis Neurosci; 1999; 16(4):781-9. PubMed ID: 10431925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal connections of eye-dominance columns in the cat cerebral cortex after monocular deprivation.
    Alekseenko SV; Toporova SN; Shkorbatova PY
    Neurosci Behav Physiol; 2008 Sep; 38(7):669-75. PubMed ID: 18709465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity.
    Horton JC; Hocking DR
    J Neurosci; 1998 Jul; 18(14):5433-55. PubMed ID: 9651225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Maffei L; Berardi N; Domenici L; Parisi V; Pizzorusso T
    J Neurosci; 1992 Dec; 12(12):4651-62. PubMed ID: 1334503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postnatal development of NMDA, AMPA, and kainate receptors in individual layers of rat visual cortex and the effect of monocular deprivation.
    Kumar A; Schliebs R; Bigl V
    Int J Dev Neurosci; 1994 Feb; 12(1):31-41. PubMed ID: 7912039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial analysis of ocular dominance patterns in monocularly deprived cats.
    Schmidt KE; Stephan M; Singer W; Löwel S
    Cereb Cortex; 2002 Aug; 12(8):783-96. PubMed ID: 12122027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monocularly induced 2-deoxyglucose patterns in the visual cortex and lateral geniculate nucleus of the cat: I. Anaesthetized and paralysed animals.
    Löwel S; Singer W
    Eur J Neurosci; 1993 Jul; 5(7):846-56. PubMed ID: 8281297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monocularly induced 2-deoxyglucose patterns in the visual cortex and lateral geniculate nucleus of the cat: II. Awake animals and strabismic animals.
    Löwel S; Singer W
    Eur J Neurosci; 1993 Jul; 5(7):857-69. PubMed ID: 8281298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-derived neurotrophic factor expands ocular dominance columns in visual cortex in monocularly deprived and nondeprived kittens but does not in adult cats.
    Hata Y; Ohshima M; Ichisaka S; Wakita M; Fukuda M; Tsumoto T
    J Neurosci; 2000 Feb; 20(3):RC57. PubMed ID: 10648732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome oxidase and neurofilament reactivity in monocularly deprived human primary visual cortex.
    Duffy KR; Murphy KM; Frosch MP; Livingstone MS
    Cereb Cortex; 2007 Jun; 17(6):1283-91. PubMed ID: 16831856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.