These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 10910687)
21. Peptide internal motions on nanosecond time scale derived from direct fitting of (13)C and (15)N NMR spectral density functions. Mayo KH; Daragan VA; Idiyatullin D; Nesmelova I J Magn Reson; 2000 Sep; 146(1):188-95. PubMed ID: 10968972 [TBL] [Abstract][Full Text] [Related]
22. Quantitative analysis of conformational exchange contributions to 1H-15N multiple-quantum relaxation using field-dependent measurements. Time scale and structural characterization of exchange in a calmodulin C-terminal domain mutant. Lundström P; Akke M J Am Chem Soc; 2004 Jan; 126(3):928-35. PubMed ID: 14733570 [TBL] [Abstract][Full Text] [Related]
23. A Bayesian statistical method for the detection and quantification of rotational diffusion anisotropy from NMR relaxation data. Andrec M; Inman KG; Weber DJ; Levy RM; Montelione GT J Magn Reson; 2000 Sep; 146(1):66-80. PubMed ID: 10968959 [TBL] [Abstract][Full Text] [Related]
24. Characterization of micros-ms dynamics of proteins using a combined analysis of 15N NMR relaxation and chemical shift: conformational exchange in plastocyanin induced by histidine protonations. Hass MA; Thuesen MH; Christensen HE; Led JJ J Am Chem Soc; 2004 Jan; 126(3):753-65. PubMed ID: 14733549 [TBL] [Abstract][Full Text] [Related]
25. Improvement of duty-cycle heating compensation in NMR spin relaxation experiments. Yip GN; Zuiderweg ER J Magn Reson; 2005 Oct; 176(2):171-8. PubMed ID: 16009587 [TBL] [Abstract][Full Text] [Related]
26. Characterization of the overall rotational diffusion of a protein from 15N relaxation measurements and hydrodynamic calculations. Blake-Hall J; Walker O; Fushman D Methods Mol Biol; 2004; 278():139-60. PubMed ID: 15317996 [TBL] [Abstract][Full Text] [Related]
27. Chemical shift anisotropy tensors of carbonyl, nitrogen, and amide proton nuclei in proteins through cross-correlated relaxation in NMR spectroscopy. Loth K; Pelupessy P; Bodenhausen G J Am Chem Soc; 2005 Apr; 127(16):6062-8. PubMed ID: 15839707 [TBL] [Abstract][Full Text] [Related]
28. Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy. Wylie BJ; Franks WT; Graesser DT; Rienstra CM J Am Chem Soc; 2005 Aug; 127(34):11946-7. PubMed ID: 16117526 [TBL] [Abstract][Full Text] [Related]
29. High-resolution field-cycling NMR studies of a DNA octamer as a probe of phosphodiester dynamics and comparison with computer simulation. Roberts MF; Cui Q; Turner CJ; Case DA; Redfield AG Biochemistry; 2004 Mar; 43(12):3637-50. PubMed ID: 15035634 [TBL] [Abstract][Full Text] [Related]
30. Quantitative determination of NOE rates in perdeuterated and protonated proteins: practical and theoretical aspects. Vögeli B; Friedmann M; Leitz D; Sobol A; Riek R J Magn Reson; 2010 Jun; 204(2):290-302. PubMed ID: 20381391 [TBL] [Abstract][Full Text] [Related]
31. Accurate measurement of longitudinal cross-relaxation rates in nuclear magnetic resonance. Pelupessy P; Ferrage F; Bodenhausen G J Chem Phys; 2007 Apr; 126(13):134508. PubMed ID: 17430048 [TBL] [Abstract][Full Text] [Related]
32. Direct quantitative comparison between cross-relaxation imaging and diffusion tensor imaging of the human brain at 3.0 T. Underhill HR; Yuan C; Yarnykh VL Neuroimage; 2009 Oct; 47(4):1568-78. PubMed ID: 19500678 [TBL] [Abstract][Full Text] [Related]
33. Determination of the glycosidic bond angle chi in RNA from cross-correlated relaxation of CH dipolar coupling and N chemical shift anisotropy. Duchardt E; Richter C; Ohlenschläger O; Görlach M; Wöhnert J; Schwalbe H J Am Chem Soc; 2004 Feb; 126(7):1962-70. PubMed ID: 14971929 [TBL] [Abstract][Full Text] [Related]
34. Anisotropy of rotational diffusion, dipole-dipole cross-correlated NMR relaxation and angles between bond vectors in proteins. Deschamps M; Bodenhausen G Chemphyschem; 2001 Sep; 2(8-9):539-43. PubMed ID: 23686993 [TBL] [Abstract][Full Text] [Related]
35. HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. García de la Torre J; Huertas ML; Carrasco B J Magn Reson; 2000 Nov; 147(1):138-46. PubMed ID: 11042057 [TBL] [Abstract][Full Text] [Related]
36. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy. Wylie BJ; Franks WT; Rienstra CM J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346 [TBL] [Abstract][Full Text] [Related]
37. Effects of molecular association on polarizability relaxation in liquid mixtures of benzene and hexafluorobenzene. Elola MD; Ladanyi BM; Scodinu A; Loughnane BJ; Fourkas JT J Phys Chem B; 2005 Dec; 109(50):24085-99. PubMed ID: 16375401 [TBL] [Abstract][Full Text] [Related]
38. Detection of correlated dynamics on multiple timescales by measurement of the differential relaxation of zero- and double-quantum coherences involving sidechain methyl groups in proteins. Del Rio A; Anand A; Ghose R J Magn Reson; 2006 May; 180(1):1-17. PubMed ID: 16473030 [TBL] [Abstract][Full Text] [Related]
39. The displacement correlation tensor: microstructure, ensemble anisotropy and curving fibers. Nørhøj Jespersen S; Buhl N J Magn Reson; 2011 Jan; 208(1):34-43. PubMed ID: 21035365 [TBL] [Abstract][Full Text] [Related]
40. Internal bulge and tetraloop of the catalytic domain 5 of a group II intron ribozyme are flexible: implications for catalysis. Eldho NV; Dayie KT J Mol Biol; 2007 Jan; 365(4):930-44. PubMed ID: 17098254 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]