BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 10911731)

  • 21. Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of chl fluorescence in intact leaves of tobacco plants.
    Miyake C; Shinzaki Y; Miyata M; Tomizawa K
    Plant Cell Physiol; 2004 Oct; 45(10):1426-33. PubMed ID: 15564526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of exogenous quinones with membranes of higher plant chloroplasts: modulation of quinone capacities as photochemical and non-photochemical quenchers of energy in Photosystem II during light-dark transitions.
    Bukhov NG; Sridharan G; Egorova EA; Carpentier R
    Biochim Biophys Acta; 2003 Jun; 1604(2):115-23. PubMed ID: 12765768
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH.
    Bruce D; Samson G; Carpenter C
    Biochemistry; 1997 Jan; 36(4):749-55. PubMed ID: 9020772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-temperature energy transfer in LHC-II trimers from the Chl a/b light-harvesting antenna of photosystem II.
    Savikhin S; van Amerongen H; Kwa SL; van Grondelle R; Struve WS
    Biophys J; 1994 May; 66(5):1597-603. PubMed ID: 8061208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonphotochemical quenching of excitation energy in photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids.
    Vasil'ev S; Bruce D
    Biochemistry; 1998 Aug; 37(31):11046-54. PubMed ID: 9693000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The room temperature emission band shape of the lowest energy chlorophyll spectral form of LHCI.
    Jennings RC; Garlaschi FM; Engelmann E; Zucchelli G
    FEBS Lett; 2003 Jul; 547(1-3):107-10. PubMed ID: 12860395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity.
    Lazár D
    J Theor Biol; 2003 Feb; 220(4):469-503. PubMed ID: 12623282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A retrieval algorithm to evaluate the Photosystem I and Photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures.
    Palombi L; Cecchi G; Lognoli D; Raimondi V; Toci G; Agati G
    Photosynth Res; 2011 Sep; 108(2-3):225-39. PubMed ID: 21866392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature-induced reversible changes in photosynthesis efficiency and organization of thylakoid membranes from pea (Pisum sativum).
    Rath JR; Pandey J; Yadav RM; Zamal MY; Ramachandran P; Mekala NR; Allakhverdiev SI; Subramanyam R
    Plant Physiol Biochem; 2022 Aug; 185():144-154. PubMed ID: 35696889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generation of fluorescence quenchers from the triplet states of chlorophylls in the major light-harvesting complex II from green plants.
    Barzda V; Vengris M; Valkunas L; van Grondelle R; van Amerongen H
    Biochemistry; 2000 Aug; 39(34):10468-77. PubMed ID: 10956037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correlation between the "low"-salt-induced increase in the F730/F685 fluorescence emission ratio at 77 K in isolated chloroplasts, and the organization of chlorophyll in photosystem I pigment-protein complexes of thylakoids.
    Argyroudi-Akoyunoglou J
    Arch Biochem Biophys; 1991 May; 286(2):524-32. PubMed ID: 1897975
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Pigment-protein complexes nd the number of the reaction photosystem centers in pea chlorophyll mutants].
    Ladygin VG
    Izv Akad Nauk Ser Biol; 2004; (1):65-76. PubMed ID: 15049071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoinhibitory light-induced changes in the composition of chlorophyll-protein complexes and photochemical activity in photosystem-I submembrane fractions.
    Rajagopal S; Bukhov NG; Carpentier R
    Photochem Photobiol; 2003 Mar; 77(3):284-91. PubMed ID: 12685656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multifrequency cross-correlation phase fluorometry of chlorophyll a fluorescence in thylakoid and PSII-enriched membranes.
    Govindjee ; Van de Ven M; Cao J; Royer C; Gratton E
    Photochem Photobiol; 1993 Sep; 58(3):438-45. PubMed ID: 8234479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification of the photosystem II acceptor side function in a D1 mutant (arginine-269-glycine) of Chlamydomonas reinhardti.
    Xiong J; Hutchison RS; Sayre RT; Govindjee
    Biochim Biophys Acta; 1997 Nov; 1322(1):60-76. PubMed ID: 9398079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global spectral-kinetic analysis of room temperature chlorophyll a fluorescence from light-harvesting antenna mutants of barley.
    Gilmor AM; Itoh S; Govindjee
    Philos Trans R Soc Lond B Biol Sci; 2000 Oct; 355(1402):1371-84. PubMed ID: 11127992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A few molecules of zeaxanthin per reaction centre of photosystem II permit effective thermal dissipation of light energy in photosystem II of a poikilohydric moss.
    Bukhov NG; Kopecky J; Pfündel EE; Klughammer C; Heber U
    Planta; 2001 Apr; 212(5-6):739-48. PubMed ID: 11346947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein phosphorylation and Mg2+ influence light harvesting and electron transport in chloroplast thylakoid membrane material containing only the chlorophyll-a/b-binding light-harvesting complex of photosystem II and photosystem I.
    Harrison MA; Allen JF
    Eur J Biochem; 1992 Mar; 204(3):1107-14. PubMed ID: 1551390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf.
    Wientjes E; Philippi J; Borst JW; van Amerongen H
    Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):259-265. PubMed ID: 28095301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uphill energy transfer in a chlorophyll d-dominating oxygenic photosynthetic prokaryote, Acaryochloris marina.
    Mimuro M; Hirayama K; Uezono K; Miyashita H; Miyachi S
    Biochim Biophys Acta; 2000 Jan; 1456(1):27-34. PubMed ID: 10611453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.