These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10911871)

  • 21. TRPC channels underlie cholinergic plateau potentials and persistent activity in entorhinal cortex.
    Zhang Z; Reboreda A; Alonso A; Barker PA; Séguéla P
    Hippocampus; 2011 Apr; 21(4):386-97. PubMed ID: 20082292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons.
    Klink R; Alonso A
    J Neurophysiol; 1993 Jul; 70(1):144-57. PubMed ID: 7689647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frequency-dependent information flow from the entorhinal cortex to the hippocampus.
    Gloveli T; Schmitz D; Empson RM; Heinemann U
    J Neurophysiol; 1997 Dec; 78(6):3444-9. PubMed ID: 9405558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fundamental differences in spontaneous synaptic inhibition between deep and superficial layers of the rat entorhinal cortex.
    Woodhall GL; Bailey SJ; Thompson SE; Evans DI; Jones RS
    Hippocampus; 2005; 15(2):232-45. PubMed ID: 15386594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat.
    Quilichini P; Sirota A; Buzsáki G
    J Neurosci; 2010 Aug; 30(33):11128-42. PubMed ID: 20720120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys.
    Buckmaster PS; Alonso A; Canfield DR; Amaral DG
    J Comp Neurol; 2004 Mar; 470(3):317-29. PubMed ID: 14755519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dopamine suppresses persistent firing in layer III lateral entorhinal cortex neurons.
    Batallán-Burrowes AA; Chapman CA
    Neurosci Lett; 2018 May; 674():70-74. PubMed ID: 29524644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Periodic oscillatory activity in parahippocampal slices maintained in vitro.
    Kano T; Inaba Y; Avoli M
    Neuroscience; 2005; 130(4):1041-53. PubMed ID: 15652999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cholinergic receptor activation supports persistent firing in layer III neurons in the medial entorhinal cortex.
    Jochems A; Reboreda A; Hasselmo ME; Yoshida M
    Behav Brain Res; 2013 Oct; 254():108-15. PubMed ID: 23810207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of resurgent sodium-current expression in rat parahippocampal cortices and hippocampal formation.
    Castelli L; Nigro MJ; Magistretti J
    Brain Res; 2007 Aug; 1163():44-55. PubMed ID: 17628510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spike patterning by Ca2+-dependent regulation of a muscarinic cation current in entorhinal cortex layer II neurons.
    Magistretti J; Ma L; Shalinsky MH; Lin W; Klink R; Alonso A
    J Neurophysiol; 2004 Sep; 92(3):1644-57. PubMed ID: 15152013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of spontaneous EPSCs in layer II and layer IV-V neurons of the rat entorhinal cortex in vitro.
    Berretta N; Jones RS
    J Neurophysiol; 1996 Aug; 76(2):1089-100. PubMed ID: 8871222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Input from the presubiculum to dendrites of layer-V neurons of the medial entorhinal cortex of the rat.
    Wouterlood FG; Van Haeften T; Eijkhoudt M; Baks-Te-Bulte L; Goede PH; Witter MP
    Brain Res; 2004 Jul; 1013(1):1-12. PubMed ID: 15196963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Properties of entorhinal cortex projection cells to the hippocampal formation.
    Heinemann U; Schmitz D; Eder C; Gloveli T
    Ann N Y Acad Sci; 2000 Jun; 911():112-26. PubMed ID: 10911870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphological and electrophysiological properties of lateral entorhinal cortex layers II and III principal neurons.
    Tahvildari B; Alonso A
    J Comp Neurol; 2005 Oct; 491(2):123-40. PubMed ID: 16127693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss.
    Scharfman HE; Goodman JH; Du F; Schwarcz R
    J Neurophysiol; 1998 Dec; 80(6):3031-46. PubMed ID: 9862904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of properties of medial entorhinal cortex layer II neurons in two anatomical dimensions with and without cholinergic activation.
    Yoshida M; Jochems A; Hasselmo ME
    PLoS One; 2013; 8(9):e73904. PubMed ID: 24069244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold.
    Erchova I; Kreck G; Heinemann U; Herz AV
    J Physiol; 2004 Oct; 560(Pt 1):89-110. PubMed ID: 15272028
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Voltage dependence of subthreshold resonance frequency in layer II of medial entorhinal cortex.
    Shay CF; Boardman IS; James NM; Hasselmo ME
    Hippocampus; 2012 Aug; 22(8):1733-49. PubMed ID: 22368047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Entorhinal cortex projection cells to the hippocampal formation in vitro.
    Dugladze T; Heinemann U; Gloveli T
    Brain Res; 2001 Jun; 905(1-2):224-31. PubMed ID: 11423098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.