These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 10912463)
1. Adrenergic inhibition of endogenous acetylcholine release on postganglionic cardiac vagal nerve terminals. Akiyama T; Yamazaki T Cardiovasc Res; 2000 Jun; 46(3):531-8. PubMed ID: 10912463 [TBL] [Abstract][Full Text] [Related]
2. In vivo detection of endogenous acetylcholine release in cat ventricles. Akiyama T; Yamazaki T; Ninomiya I Am J Physiol; 1994 Mar; 266(3 Pt 2):H854-60. PubMed ID: 7909199 [TBL] [Abstract][Full Text] [Related]
3. Effects of Ca2+ channel antagonists on nerve stimulation-induced and ischemia-induced myocardial interstitial acetylcholine release in cats. Kawada T; Yamazaki T; Akiyama T; Uemura K; Kamiya A; Shishido T; Mori H; Sugimachi M Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2187-91. PubMed ID: 16766645 [TBL] [Abstract][Full Text] [Related]
4. Effects of right and left vagal stimulation on left ventricular acetylcholine levels in the cat. Akiyama T; Yamazaki T Acta Physiol Scand; 2001 May; 172(1):11-6. PubMed ID: 11437735 [TBL] [Abstract][Full Text] [Related]
5. Effects of Ca2+ channel antagonists on acetylcholine and catecholamine releases in the in vivo rat adrenal medulla. Akiyama T; Yamazaki T; Mori H; Sunagawa K Am J Physiol Regul Integr Comp Physiol; 2004 Jul; 287(1):R161-6. PubMed ID: 15031137 [TBL] [Abstract][Full Text] [Related]
6. In vivo direct monitoring of vagal acetylcholine release to the sinoatrial node. Shimizu S; Akiyama T; Kawada T; Shishido T; Yamazaki T; Kamiya A; Mizuno M; Sano S; Sugimachi M Auton Neurosci; 2009 Jun; 148(1-2):44-9. PubMed ID: 19278905 [TBL] [Abstract][Full Text] [Related]
7. Effects of N- and L-type calcium channel antagonists and (+/-)-Bay K8644 on nerve-induced catecholamine secretion from bovine perfused adrenal glands. O'Farrell M; Ziogas J; Marley PD Br J Pharmacol; 1997 Jun; 121(3):381-8. PubMed ID: 9179377 [TBL] [Abstract][Full Text] [Related]
8. Effects of omega-conotoxin GVIA on cardiac sympathetic nerve function. Yahagi N; Akiyama T; Yamazaki T J Auton Nerv Syst; 1998 Jan; 68(1-2):43-8. PubMed ID: 9531444 [TBL] [Abstract][Full Text] [Related]
9. Characterization of ouabain-induced noradrenaline and acetylcholine release from in situ cardiac autonomic nerve endings. Yamazaki T; Akiyama T; Kitagawa H; Komaki F; Mori H; Kawada T; Sunagawa K; Sugimachi M Acta Physiol (Oxf); 2007 Dec; 191(4):275-84. PubMed ID: 17995575 [TBL] [Abstract][Full Text] [Related]
10. Differential acetylcholine release mechanisms in the ischemic and non-ischemic myocardium. Kawada T; Yamazaki T; Akiyama T; Sato T; Shishido T; Inagaki M; Takaki H; Sugimachi M; Sunagawa K J Mol Cell Cardiol; 2000 Mar; 32(3):405-14. PubMed ID: 10731440 [TBL] [Abstract][Full Text] [Related]
11. Nitric oxide-cGMP pathway facilitates acetylcholine release and bradycardia during vagal nerve stimulation in the guinea-pig in vitro. Herring N; Paterson DJ J Physiol; 2001 Sep; 535(Pt 2):507-18. PubMed ID: 11533140 [TBL] [Abstract][Full Text] [Related]
12. Role of L- and N-type Ca2+ channels in muscarinic receptor-mediated facilitation of ACh and noradrenaline release in the rat urinary bladder. Somogyi GT; Zernova GV; Tanowitz M; de Groat WC J Physiol; 1997 Mar; 499 ( Pt 3)(Pt 3):645-54. PubMed ID: 9130161 [TBL] [Abstract][Full Text] [Related]
13. Multiple calcium channels regulate neurotransmitter release from vagus nerve terminals in the cat bronchiole. Fujisawa K; Onoue H; Abe K; Ito Y Br J Pharmacol; 1999 Sep; 128(1):262-8. PubMed ID: 10498861 [TBL] [Abstract][Full Text] [Related]
14. Effect of omega-conotoxin GVIA on noradrenaline release from postganglionic sympathetic neurones in rabbit aorta. Nedergaard OA Pharmacol Toxicol; 2000 Jan; 86(1):30-5. PubMed ID: 10720104 [TBL] [Abstract][Full Text] [Related]
15. omega-Conotoxin-GVIA-sensitive calcium channels on preganglionic nerve terminals in mouse pelvic and celiac ganglia. Jobling P Auton Neurosci; 2009 Mar; 146(1-2):56-61. PubMed ID: 19162562 [TBL] [Abstract][Full Text] [Related]
16. In vivo assessment of acetylcholine-releasing function at cardiac vagal nerve terminals. Kawada T; Yamazaki T; Akiyama T; Shishido T; Inagaki M; Uemura K; Miyamoto T; Sugimachi M; Takaki H; Sunagawa K Am J Physiol Heart Circ Physiol; 2001 Jul; 281(1):H139-45. PubMed ID: 11406478 [TBL] [Abstract][Full Text] [Related]
17. N-type, omega-conotoxin-sensitive Ca2+ channels mediate electrically evoked release of ACh in guinea pig trachea. Baker DG; Don HF; Brown JK Am J Physiol; 1993 Jun; 264(6 Pt 1):L581-6. PubMed ID: 8392814 [TBL] [Abstract][Full Text] [Related]
18. Medetomidine, an α(2)-adrenergic agonist, activates cardiac vagal nerve through modulation of baroreflex control. Shimizu S; Akiyama T; Kawada T; Sata Y; Mizuno M; Kamiya A; Shishido T; Inagaki M; Shirai M; Sano S; Sugimachi M Circ J; 2012; 76(1):152-9. PubMed ID: 22040937 [TBL] [Abstract][Full Text] [Related]
19. In vivo monitoring of acetylcholine release from cardiac vagal nerve endings in anesthetized mice. Zhan DY; Du CK; Akiyama T; Sonobe T; Tsuchimochi H; Shimizu S; Kawada T; Shirai M Auton Neurosci; 2013 Jun; 176(1-2):91-4. PubMed ID: 23499513 [TBL] [Abstract][Full Text] [Related]
20. Angiotensin II attenuates myocardial interstitial acetylcholine release in response to vagal stimulation. Kawada T; Yamazaki T; Akiyama T; Li M; Zheng C; Shishido T; Mori H; Sugimachi M Am J Physiol Heart Circ Physiol; 2007 Oct; 293(4):H2516-22. PubMed ID: 17644572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]