These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 10912800)
1. Apical secretion and sialylation of soluble dipeptidyl peptidase IV are two related events. Slimane TA; Lenoir C; Sapin C; Maurice M; Trugnan G Exp Cell Res; 2000 Jul; 258(1):184-94. PubMed ID: 10912800 [TBL] [Abstract][Full Text] [Related]
2. The cytoplasmic/transmembrane domain of dipeptidyl peptidase IV, a type II glycoprotein, contains an apical targeting signal that does not specifically interact with lipid rafts. Slimane TA; Lenoir C; Bello V; Delaunay JL; Goding JW; Chwetzoff S; Maurice M; Fransen JA; Trugnan G Exp Cell Res; 2001 Oct; 270(1):45-55. PubMed ID: 11597126 [TBL] [Abstract][Full Text] [Related]
3. Intestinal dipeptidyl peptidase IV is efficiently sorted to the apical membrane through the concerted action of N- and O-glycans as well as association with lipid microdomains. Alfalah M; Jacob R; Naim HY J Biol Chem; 2002 Mar; 277(12):10683-90. PubMed ID: 11773049 [TBL] [Abstract][Full Text] [Related]
4. GalNAc-alpha-O-benzyl inhibits NeuAcalpha2-3 glycosylation and blocks the intracellular transport of apical glycoproteins and mucus in differentiated HT-29 cells. Huet G; Hennebicq-Reig S; de Bolos C; Ulloa F; Lesuffleur T; Barbat A; Carrière V; Kim I; Real FX; Delannoy P; Zweibaum A J Cell Biol; 1998 Jun; 141(6):1311-22. PubMed ID: 9628888 [TBL] [Abstract][Full Text] [Related]
5. Apical transport of osteopontin is independent of N-glycosylation and sialylation. Trischler M; Koch-Brandt C; Ullrich O Mol Membr Biol; 2001; 18(4):275-81. PubMed ID: 11780756 [TBL] [Abstract][Full Text] [Related]
6. GalNAc-alpha -O-benzyl inhibits sialylation of de Novo synthesized apical but not basolateral sialoglycoproteins and blocks lysosomal enzyme processing in a post-trans-Golgi network compartment. Ulloa F; Franci C; Real FX J Biol Chem; 2000 Jun; 275(25):18785-93. PubMed ID: 10751388 [TBL] [Abstract][Full Text] [Related]
8. O-linked glycans mediate apical sorting of human intestinal sucrase-isomaltase through association with lipid rafts. Alfalah M; Jacob R; Preuss U; Zimmer KP; Naim H; Naim HY Curr Biol; 1999 Jun; 9(11):593-6. PubMed ID: 10359703 [TBL] [Abstract][Full Text] [Related]
9. Core2 O-glycan structure is essential for the cell surface expression of sucrase isomaltase and dipeptidyl peptidase-IV during intestinal cell differentiation. Lee SH; Yu SY; Nakayama J; Khoo KH; Stone EL; Fukuda MN; Marth JD; Fukuda M J Biol Chem; 2010 Nov; 285(48):37683-92. PubMed ID: 20841351 [TBL] [Abstract][Full Text] [Related]
10. Differential distribution of sialic acid in alpha2,3 and alpha2,6 linkages in the apical membrane of cultured epithelial cells and tissues. Ulloa F; Real FX J Histochem Cytochem; 2001 Apr; 49(4):501-10. PubMed ID: 11259453 [TBL] [Abstract][Full Text] [Related]
11. Benzyl-alpha-GalNAc inhibits sialylation of O-glycosidic sugar chains on CD44 and enhances experimental metastatic capacity in B16BL6 melanoma cells. Nakano T; Matsui T; Ota T Anticancer Res; 1996; 16(6B):3577-84. PubMed ID: 9042224 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of mucin synthesis by benzyl-alpha-GalNAc in KATO III gastric cancer and Caco-2 colon cancer cells. Byrd JC; Dahiya R; Huang J; Kim YS Eur J Cancer; 1995; 31A(9):1498-505. PubMed ID: 7577079 [TBL] [Abstract][Full Text] [Related]
13. Putative O-glycosylation sites and a membrane anchor are necessary for apical delivery of the human neurotrophin receptor in Caco-2 cells. Monlauzeur L; Breuza L; Le Bivic A J Biol Chem; 1998 Nov; 273(46):30263-70. PubMed ID: 9804786 [TBL] [Abstract][Full Text] [Related]
14. Rapid sequestration of DPP IV/CD26 and other cell surface proteins in an autophagic-like compartment in Caco-2 cells treated with forskolin. Baricault L; Fransen JA; Garcia M; Sapin C; Codogno P; Ginsel LA; Trugnan G J Cell Sci; 1995 May; 108 ( Pt 5)():2109-21. PubMed ID: 7657729 [TBL] [Abstract][Full Text] [Related]
15. Investigation into the bioavailability of milk protein-derived peptides with dipeptidyl-peptidase IV inhibitory activity using Caco-2 cell monolayers. Lacroix IME; Chen XM; Kitts DD; Li-Chan ECY Food Funct; 2017 Feb; 8(2):701-709. PubMed ID: 28098291 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of the glycosylation and alteration in the intracellular trafficking of mucins and other glycoproteins by GalNAcalpha-O-bn in mucosal cell lines: an effect mediated through the intracellular synthesis of complex GalNAcalpha-O-bn oligosaccharides. Gouyer V; Leteurtre E; Zanetta JP; Lesuffleur T; Delannoy P; Huet G Front Biosci; 2001 Oct; 6():D1235-44. PubMed ID: 11578961 [TBL] [Abstract][Full Text] [Related]
17. Evidence that a peptide corresponding to the rat Muc2 C-terminus undergoes disulphide-mediated dimerization. Bell SL; Khatri IA; Xu G; Forstner JF Eur J Biochem; 1998 Apr; 253(1):123-31. PubMed ID: 9578469 [TBL] [Abstract][Full Text] [Related]
18. Detection of dipeptidyl peptidase IV in glioma C6 and neuroblastoma SK-N-SH cell lines. Sedo A; Revoltella RP Biochem Cell Biol; 1995; 73(1-2):113-5. PubMed ID: 7662310 [TBL] [Abstract][Full Text] [Related]
19. Mucin impedes cytotoxic effect of 5-FU against growth of human pancreatic cancer cells: overcoming cellular barriers for therapeutic gain. Kalra AV; Campbell RB Br J Cancer; 2007 Oct; 97(7):910-8. PubMed ID: 17912239 [TBL] [Abstract][Full Text] [Related]
20. Transport and function of syntaxin 3 in human epithelial intestinal cells. Breuza L; Fransen J; Le Bivic A Am J Physiol Cell Physiol; 2000 Oct; 279(4):C1239-48. PubMed ID: 11003604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]