BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 10912829)

  • 1. Electromyographic responses to a mechanical perturbation applied during impending arm movements in different directions: one-joint and two-joint conditions.
    Koshland GF; Hasan Z
    Exp Brain Res; 2000 Jun; 132(4):485-99. PubMed ID: 10912829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromyographic responses to constant position errors imposed during voluntary elbow joint movement in human.
    Bennett DJ
    Exp Brain Res; 1993; 95(3):499-508. PubMed ID: 8224076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Timing and magnitude of electromyographic activity for two-joint arm movements in different directions.
    Karst GM; Hasan Z
    J Neurophysiol; 1991 Nov; 66(5):1594-604. PubMed ID: 1765796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient reversal of the stretch reflex in human arm muscles.
    Lacquaniti F; Borghese NA; Carrozzo M
    J Neurophysiol; 1991 Sep; 66(3):939-54. PubMed ID: 1753296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretch reflex responses in the human elbow joint during a voluntary movement.
    Bennett DJ
    J Physiol; 1994 Jan; 474(2):339-51. PubMed ID: 8006819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-latency and voluntary responses to an arm displacement can be rapidly attenuated by perturbation offset.
    Kurtzer I; Pruszynski JA; Scott SH
    J Neurophysiol; 2010 Jun; 103(6):3195-204. PubMed ID: 20457850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals.
    Osu R; Gomi H
    J Neurophysiol; 1999 Apr; 81(4):1458-68. PubMed ID: 10200182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast corrective responses are evoked by perturbations approaching the natural variability of posture and movement tasks.
    Crevecoeur F; Kurtzer I; Scott SH
    J Neurophysiol; 2012 May; 107(10):2821-32. PubMed ID: 22357792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle activity for initiation of planar, two-joint arm movements in different directions.
    Hasan Z; Karst GM
    Exp Brain Res; 1989; 76(3):651-5. PubMed ID: 2792251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of autogenic and heterogenic stretch reflexes on pre-load activity in the human arm.
    Smeets JB; Erkelens CJ
    J Physiol; 1991; 440():455-65. PubMed ID: 1804972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between stretch reflex thresholds and voluntary arm muscle activation in patients with spasticity.
    Musampa NK; Mathieu PA; Levin MF
    Exp Brain Res; 2007 Aug; 181(4):579-93. PubMed ID: 17476486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of the wrist in three-joint arm movements to multiple directions in the horizontal plane.
    Koshland GF; Galloway JC; Nevoret-Bell CJ
    J Neurophysiol; 2000 May; 83(5):3188-95. PubMed ID: 10805717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel muscle patterns for reaching after cervical spinal cord injury: a case for motor redundancy.
    Koshland GF; Galloway JC; Farley B
    Exp Brain Res; 2005 Jul; 164(2):133-47. PubMed ID: 16028034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shoulder and elbow joint power differ as a general feature of vertical arm movements.
    Galloway JC; Bhat A; Heathcock JC; Manal K
    Exp Brain Res; 2004 Aug; 157(3):391-6. PubMed ID: 15252703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements.
    Galloway JC; Koshland GF
    Exp Brain Res; 2002 Jan; 142(2):163-80. PubMed ID: 11807572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinating long-latency stretch responses across the shoulder, elbow, and wrist during goal-directed reaching.
    Weiler J; Saravanamuttu J; Gribble PL; Pruszynski JA
    J Neurophysiol; 2016 Nov; 116(5):2236-2249. PubMed ID: 27535378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensating for intersegmental dynamics across the shoulder, elbow, and wrist joints during feedforward and feedback control.
    Maeda RS; Cluff T; Gribble PL; Pruszynski JA
    J Neurophysiol; 2017 Oct; 118(4):1984-1997. PubMed ID: 28701534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-latency responses during reaching account for the mechanical interaction between the shoulder and elbow joints.
    Kurtzer I; Pruszynski JA; Scott SH
    J Neurophysiol; 2009 Nov; 102(5):3004-15. PubMed ID: 19710379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.