These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 1091284)

  • 1. Fluorescence energy transfer between ligand binding sites on aspartate transcarbamylase.
    Matsumoto S; Hammes GG
    Biochemistry; 1975 Jan; 14(2):214-24. PubMed ID: 1091284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyridoxal 5'-phosphate, a fluorescent probe in the active site of aspartate transcarbamylase.
    Kempe TD; Stark GR
    J Biol Chem; 1975 Sep; 250(17):6861-9. PubMed ID: 239951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence energy transfer studies on lima bean lectin. Distance between the subunit hydrophobic binding site and the thiol group essential for carbohydrate binding.
    Kella NK; Roberts DD; Shafer JA; Goldstein IJ
    J Biol Chem; 1984 Apr; 259(8):4777-81. PubMed ID: 6715322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimensions in solution of pyridoxylated apohemoglobin.
    Kowalczyck J; Bucci E
    Biochemistry; 1983 Sep; 22(20):4805-9. PubMed ID: 6626535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural studies on bacterial luciferase using energy transfer and emission anisotropy.
    Tu SC; Wu CW; Hastings JW
    Biochemistry; 1978 Mar; 17(6):987-93. PubMed ID: 305259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural mapping of aspartate transcarbamoylase by fluorescence energy-transfer measurements: determination of the distance between catalytic sites of different subunits.
    Hahn LH; Hammes GG
    Biochemistry; 1978 Jun; 17(12):2423-9. PubMed ID: 678521
    [No Abstract]   [Full Text] [Related]  

  • 7. Ligand binding and protein dynamics: a fluorescence depolarization study of aspartate transcarbamylase from Escherichia coli.
    Royer CA; Tauc P; Hervé G; Brochon JC
    Biochemistry; 1987 Oct; 26(20):6472-8. PubMed ID: 3322381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tryptophan residues of aspartate transcarbamylase: site-directed mutagenesis and time-resolved fluorescence spectroscopy.
    Fetler L; Tauc P; Hervé G; Ladjimi MM; Brochon JC
    Biochemistry; 1992 Dec; 31(49):12504-13. PubMed ID: 1463737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear magnetic resonance study of ligand binding to Mn-aspartate transcarbamylase.
    Fan S; Harrison LW; Hammes GG
    Biochemistry; 1975 May; 14(10):2219-24. PubMed ID: 807235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distances between active site probes in glutamine synthetase from Escherichia coli: fluorescence energy transfer in free and in stacked dodecamers.
    Maurizi MR; Kasprzyk PG; Ginsburg A
    Biochemistry; 1986 Jan; 25(1):141-51. PubMed ID: 2869781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial relationship of the sigma subunit and the rifampicin binding site in RNA polymerase of Escherichia coli.
    Wu CW; Yarbrough LR; Wu FY; Hillel Z
    Biochemistry; 1976 May; 15(10):2097-104. PubMed ID: 776217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence energy transfer between heterologous active sites of affinity-labeled aspartokinase of Escherichia coli.
    Wright K; Takahashi M
    Biochemistry; 1977 Apr; 16(8):1548-54. PubMed ID: 192266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent derivatives of the pyruvate dehydrogenase component of the Escherichia coli pyruvate dehydrogenase complex.
    Papadakis N; Hammes GG
    Biochemistry; 1977 May; 16(9):1890-6. PubMed ID: 192277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural mapping of rabbit muscle phosphofructokinase. Distance between the adenosine cyclic 3',5'-phosphate binding site and a reactive sulfhydryl group.
    Craig DW; Hammes GG
    Biochemistry; 1980 Jan; 19(2):330-4. PubMed ID: 6243478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tryptophan residues at subunit interfaces used as fluorescence probes to investigate homotropic and heterotropic regulation of aspartate transcarbamylase.
    Fetler L; Tauc P; Hervé G; Cunin R; Brochon JC
    Biochemistry; 2001 Jul; 40(30):8773-82. PubMed ID: 11467937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication between catalytic subunits in hybrid aspartate transcarbamoylase molecules: effect of ligand binding to active chains on the conformation of unliganded, inactive chains.
    Yang YR; Schachman HK
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5187-91. PubMed ID: 6933552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence energy transfer experiments with Escherichia coli carbamoyl-phosphate synthetase.
    Kasprzyk PG; Anderson PM; Villafranca JJ
    Biochemistry; 1983 Apr; 22(8):1877-82. PubMed ID: 6342671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide-protein interaction markedly alters the functional properties of the catalytic subunit of aspartate transcarbamoylase.
    Zhou BB; Schachman HK
    Protein Sci; 1993 Jan; 2(1):103-12. PubMed ID: 8443583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A loop involving catalytic chain residues 230-245 is essential for the stabilization of both allosteric forms of Escherichia coli aspartate transcarbamylase.
    Middleton SA; Stebbins JW; Kantrowitz ER
    Biochemistry; 1989 Feb; 28(4):1617-26. PubMed ID: 2655696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study.
    Stebbins JW; Robertson DE; Roberts MF; Stevens RC; Lipscomb WN; Kantrowitz ER
    Protein Sci; 1992 Nov; 1(11):1435-46. PubMed ID: 1303763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.