BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 10912915)

  • 1. Spinal cord compression injury in the mouse: presentation of a model including assessment of motor dysfunction.
    Farooque M
    Acta Neuropathol; 2000 Jul; 100(1):13-22. PubMed ID: 10912915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved recovery after spinal cord injury in neuronal nitric oxide synthase-deficient mice but not in TNF-alpha-deficient mice.
    Farooque M; Isaksson J; Olsson Y
    J Neurotrauma; 2001 Jan; 18(1):105-14. PubMed ID: 11200245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion tensor imaging at 3 hours after traumatic spinal cord injury predicts long-term locomotor recovery.
    Kim JH; Loy DN; Wang Q; Budde MD; Schmidt RE; Trinkaus K; Song SK
    J Neurotrauma; 2010 Mar; 27(3):587-98. PubMed ID: 20001686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates.
    Poon PC; Gupta D; Shoichet MS; Tator CH
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2853-9. PubMed ID: 18246008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor deficits and adaptive mechanisms after thoracic spinal cord contusion in the adult rat.
    Collazos-Castro JE; López-Dolado E; Nieto-Sampedro M
    J Neurotrauma; 2006 Jan; 23(1):1-17. PubMed ID: 16430369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats.
    Gensel JC; Tovar CA; Hamers FP; Deibert RJ; Beattie MS; Bresnahan JC
    J Neurotrauma; 2006 Jan; 23(1):36-54. PubMed ID: 16430371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motoneuron loss associated with chronic locomotion impairments after spinal cord contusion in the rat.
    Collazos-Castro JE; Soto VM; Gutiérrez-Dávila M; Nieto-Sampedro M
    J Neurotrauma; 2005 May; 22(5):544-58. PubMed ID: 15892600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early functional outcomes and histological analysis after spinal cord compression injury in rats.
    Lonjon N; Kouyoumdjian P; Prieto M; Bauchet L; Haton H; Gaviria M; Privat A; Perrin FE
    J Neurosurg Spine; 2010 Jan; 12(1):106-13. PubMed ID: 20043773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved functional outcome after spinal cord injury in iNOS-deficient mice.
    Isaksson J; Farooque M; Olsson Y
    Spinal Cord; 2005 Mar; 43(3):167-70. PubMed ID: 15520837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anatomical and functional outcomes following a precise, graded, dorsal laceration spinal cord injury in C57BL/6 mice.
    Hill RL; Zhang YP; Burke DA; Devries WH; Zhang Y; Magnuson DS; Whittemore SR; Shields CB
    J Neurotrauma; 2009 Jan; 26(1):1-15. PubMed ID: 19196178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid functional recovery after spinal cord injury in young rats.
    Brown KM; Wolfe BB; Wrathall JR
    J Neurotrauma; 2005 May; 22(5):559-74. PubMed ID: 15892601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histopathological and behavioral characterization of a novel cervical spinal cord displacement contusion injury in the rat.
    Pearse DD; Lo TP; Cho KS; Lynch MP; Garg MS; Marcillo AE; Sanchez AR; Cruz Y; Dietrich WD
    J Neurotrauma; 2005 Jun; 22(6):680-702. PubMed ID: 15941377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice.
    Saadoun S; Bell BA; Verkman AS; Papadopoulos MC
    Brain; 2008 Apr; 131(Pt 4):1087-98. PubMed ID: 18267965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transplantation of porous tubes following spinal cord transection improves hindlimb function in the rat.
    Reynolds LF; Bren MC; Wilson BC; Gibson GD; Shoichet MS; Murphy RJ
    Spinal Cord; 2008 Jan; 46(1):58-64. PubMed ID: 17420773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tegaserod, a small compound mimetic of polysialic acid, promotes functional recovery after spinal cord injury in mice.
    Pan HC; Shen YQ; Loers G; Jakovcevski I; Schachner M
    Neuroscience; 2014 Sep; 277():356-66. PubMed ID: 25014876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustained spinal cord compression: part I: time-dependent effect on long-term pathophysiology.
    Carlson GD; Gorden CD; Oliff HS; Pillai JJ; LaManna JC
    J Bone Joint Surg Am; 2003 Jan; 85(1):86-94. PubMed ID: 12533577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient device to experimentally model compression injury of mammalian spinal cord.
    Ropper AE; Zeng X; Anderson JE; Yu D; Han I; Haragopal H; Teng YD
    Exp Neurol; 2015 Sep; 271():515-23. PubMed ID: 26210871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of antithrombin III on spinal cord-evoked potentials and functional recovery after spinal cord injury in rats.
    Arai M; Goto T; Seichi A; Nakamura K
    Spine (Phila Pa 1976); 2004 Feb; 29(4):405-12. PubMed ID: 15094537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of astaxanthin on sensory-motor function in a compression model of spinal cord injury: Involvement of ERK and AKT signalling pathway.
    Fakhri S; Dargahi L; Abbaszadeh F; Jorjani M
    Eur J Pain; 2019 Apr; 23(4):750-764. PubMed ID: 30427581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of alpha-phenyl-N-tert-butyl nitrone (PBN) on compression injury of rat spinal cord.
    Li GL; Farooque M; Holtz A; Olsson Y
    Free Radic Res; 1997 Aug; 27(2):187-96. PubMed ID: 9350423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.