BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 10913070)

  • 1. Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus.
    Sebulsky MT; Hohnstein D; Hunter MD; Heinrichs DE
    J Bacteriol; 2000 Aug; 182(16):4394-400. PubMed ID: 10913070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization of the iron-hydroxamate uptake system in Staphylococcus aureus.
    Cabrera G; Xiong A; Uebel M; Singh VK; Jayaswal RK
    Appl Environ Microbiol; 2001 Feb; 67(2):1001-3. PubMed ID: 11157278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of fhuD1 and fhuD2, two genes involved in iron-hydroxamate uptake in Staphylococcus aureus.
    Sebulsky MT; Heinrichs DE
    J Bacteriol; 2001 Sep; 183(17):4994-5000. PubMed ID: 11489851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Requirement of Staphylococcus aureus ATP-binding cassette-ATPase FhuC for iron-restricted growth and evidence that it functions with more than one iron transporter.
    Speziali CD; Dale SE; Henderson JA; Vinés ED; Heinrichs DE
    J Bacteriol; 2006 Mar; 188(6):2048-55. PubMed ID: 16513734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system.
    Schneider R; Hantke K
    Mol Microbiol; 1993 Apr; 8(1):111-21. PubMed ID: 8388528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron(III) hydroxamate transport across the cytoplasmic membrane of Escherichia coli.
    Köster W
    Biol Met; 1991; 4(1):23-32. PubMed ID: 1830209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-dependent ferric hydroxamate transport system in Escherichia coli: periplasmic FhuD interacts with a periplasmic and with a transmembrane/cytoplasmic region of the integral membrane protein FhuB, as revealed by competitive peptide mapping.
    Mademidis A; Killmann H; Kraas W; Flechsler I; Jung G; Braun V
    Mol Microbiol; 1997 Dec; 26(5):1109-23. PubMed ID: 9426146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron(III) hydroxamate transport in Escherichia coli K-12: FhuB-mediated membrane association of the FhuC protein and negative complementation of fhuC mutants.
    Schultz-Hauser G; Köster W; Schwarz H; Braun V
    J Bacteriol; 1992 Apr; 174(7):2305-11. PubMed ID: 1551849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Point mutations in two conserved glycine residues within the integral membrane protein FhuB affect iron(III) hydroxamate transport.
    Köster W; Böhm B
    Mol Gen Genet; 1992 Apr; 232(3):399-407. PubMed ID: 1588908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus.
    Xiong A; Singh VK; Cabrera G; Jayaswal RK
    Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():659-668. PubMed ID: 10746769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferrichrome transport in Escherichia coli K-12: altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB.
    Rohrbach MR; Braun V; Köster W
    J Bacteriol; 1995 Dec; 177(24):7186-93. PubMed ID: 8522527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport activity of FhuA, FhuC, FhuD, and FhuB derivatives in a system free of polar effects, and stoichiometry of components involved in ferrichrome uptake.
    Mademidis A; Köster W
    Mol Gen Genet; 1998 Apr; 258(1-2):156-65. PubMed ID: 9613584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron transport systems of Serratia marcescens.
    Angerer A; Klupp B; Braun V
    J Bacteriol; 1992 Feb; 174(4):1378-87. PubMed ID: 1531225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and expression of the fhu genes involved in iron(III)-hydroxamate uptake by Escherichia coli.
    Fecker L; Braun V
    J Bacteriol; 1983 Dec; 156(3):1301-14. PubMed ID: 6315685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6.
    Pramanik A; Braun V
    J Bacteriol; 2006 Jun; 188(11):3878-86. PubMed ID: 16707680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron(III) hydroxamate transport of Escherichia coli: restoration of iron supply by coexpression of the N- and C-terminal halves of the cytoplasmic membrane protein FhuB cloned on separate plasmids.
    Köster W; Braun V
    Mol Gen Genet; 1990 Sep; 223(3):379-84. PubMed ID: 2270077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic control of hydroxamate-mediated iron uptake in Escherichia coli.
    Kadner RJ; Heller K; Coulton JW; Braun V
    J Bacteriol; 1980 Jul; 143(1):256-64. PubMed ID: 6249788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved amino acids in the N- and C-terminal domains of integral membrane transporter FhuB define sites important for intra- and intermolecular interactions.
    Böhm B; Boschert H; Köster W
    Mol Microbiol; 1996 Apr; 20(1):223-32. PubMed ID: 8861219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of FhuD2 in iron(III)-hydroxamate transport in Staphylococcus aureus. Demonstration that FhuD2 binds iron(III)-hydroxamates but with minimal conformational change and implication of mutations on transport.
    Sebulsky MT; Shilton BH; Speziali CD; Heinrichs DE
    J Biol Chem; 2003 Dec; 278(50):49890-900. PubMed ID: 14514690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FhuD1, a ferric hydroxamate-binding lipoprotein in Staphylococcus aureus: a case of gene duplication and lateral transfer.
    Sebulsky MT; Speziali CD; Shilton BH; Edgell DR; Heinrichs DE
    J Biol Chem; 2004 Dec; 279(51):53152-9. PubMed ID: 15475351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.