These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10913100)

  • 1. Effects of the Calvin cycle on nicotinamide adenine dinucleotide concentrations and redox balances of Xanthobacter flavus.
    van Keulen G; Dijkhuizen L; Meijer WG
    J Bacteriol; 2000 Aug; 182(16):4637-9. PubMed ID: 10913100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Calvin cycle enzyme phosphoglycerate kinase of Xanthobacter flavus required for autotrophic CO2 fixation is not encoded by the cbb operon.
    Meijer WG
    J Bacteriol; 1994 Oct; 176(19):6120-6. PubMed ID: 7928974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
    Lu W; Wang L; Chen L; Hui S; Rabinowitz JD
    Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addition of formate dehydrogenase increases the production of renewable alkane from an engineered metabolic pathway.
    Jaroensuk J; Intasian P; Kiattisewee C; Munkajohnpon P; Chunthaboon P; Buttranon S; Trisrivirat D; Wongnate T; Maenpuen S; Tinikul R; Chaiyen P
    J Biol Chem; 2019 Jul; 294(30):11536-11548. PubMed ID: 31182484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The LysR-type transcriptional regulator CbbR controlling autotrophic CO2 fixation by Xanthobacter flavus is an NADPH sensor.
    van Keulen G; Girbal L; van den Bergh ER; Dijkhuizen L; Meijer WG
    J Bacteriol; 1998 Mar; 180(6):1411-7. PubMed ID: 9515907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of the gap-pgk operon encoding glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase of Xanthobacter flavus requires the LysR-type transcriptional activator CbbR.
    Meijer WG; van den Bergh ER; Smith LM
    J Bacteriol; 1996 Feb; 178(3):881-7. PubMed ID: 8550526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changing the Electron Acceptor Specificity of
    Kumar H; Leimkühler S
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
    Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF
    Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of light-induced redox regulation in the Calvin-Benson cycle in cyanobacteria.
    McFarlane CR; Shah NR; Kabasakal BV; Echeverria B; Cotton CAR; Bubeck D; Murray JW
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20984-20990. PubMed ID: 31570616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a Formate Dehydrogenase for NADPH Regeneration.
    Ma W; Geng Q; Chen C; Zheng YC; Yu HL; Xu JH
    Chembiochem; 2023 Oct; 24(20):e202300390. PubMed ID: 37455264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circadian tracking of nicotinamide cofactor levels in an immortalized suprachiasmatic nucleus cell line.
    Wise DD; Shear JB
    Neuroscience; 2004; 128(2):263-8. PubMed ID: 15350639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon dioxide assimilation in cyanobacteria: regulation of ribulose, 1,5-bisphosphate carboxylase.
    Tabita FR; Colletti C
    J Bacteriol; 1979 Nov; 140(2):452-8. PubMed ID: 40958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xanthobacter flavus employs a single triosephosphate isomerase for heterotrophic and autotrophic metabolism.
    Meijer WG; de Boer P; van Keulen G
    Microbiology (Reading); 1997 Jun; 143 ( Pt 6)():1925-1931. PubMed ID: 9202469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides.
    Sallin O; Reymond L; Gondrand C; Raith F; Koch B; Johnsson K
    Elife; 2018 May; 7():. PubMed ID: 29809136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biosynthesis of nicotinamide adenine dinucleotides in bacteria.
    Begley TP; Kinsland C; Mehl RA; Osterman A; Dorrestein P
    Vitam Horm; 2001; 61():103-19. PubMed ID: 11153263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver.
    Veech RL; Eggleston LV; Krebs HA
    Biochem J; 1969 Dec; 115(4):609-19. PubMed ID: 4391039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture.
    Pellny TK; Locato V; Vivancos PD; Markovic J; De Gara L; Pallardó FV; Foyer CH
    Mol Plant; 2009 May; 2(3):442-56. PubMed ID: 19825628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-Guided Design of Formate Dehydrogenase for Regeneration of a Non-Natural Redox Cofactor.
    Guo X; Wang X; Liu Y; Li Q; Wang J; Liu W; Zhao ZK
    Chemistry; 2020 Dec; 26(70):16611-16615. PubMed ID: 32815230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyridine Dinucleotides from Molecules to Man.
    Fessel JP; Oldham WM
    Antioxid Redox Signal; 2018 Jan; 28(3):180-212. PubMed ID: 28635300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in nicotinamide and adenine nucleotide systems during mixed-function oxidation of p-nitroanisole in perfused livers from normal and phenobarbital-treated rats.
    Kauffman FC; Evans RK; Thurman RG
    Biochem J; 1977 Sep; 166(3):583-92. PubMed ID: 23104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.