These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
475 related articles for article (PubMed ID: 10913288)
1. Probing the S1/S1' substrate binding pocket geometry of HIV-1 protease with modified aspartic acid analogues. Short GF; Laikhter AL; Lodder M; Shayo Y; Arslan T; Hecht SM Biochemistry; 2000 Aug; 39(30):8768-81. PubMed ID: 10913288 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of an in vivo HIV-1 protease mutant in complex with saquinavir: insights into the mechanisms of drug resistance. Hong L; Zhang XC; Hartsuck JA; Tang J Protein Sci; 2000 Oct; 9(10):1898-904. PubMed ID: 11106162 [TBL] [Abstract][Full Text] [Related]
3. Structural Adaptation of Darunavir Analogues against Primary Mutations in HIV-1 Protease. Lockbaum GJ; Leidner F; Rusere LN; Henes M; Kosovrasti K; Nachum GS; Nalivaika EA; Ali A; Yilmaz NK; Schiffer CA ACS Infect Dis; 2019 Feb; 5(2):316-325. PubMed ID: 30543749 [TBL] [Abstract][Full Text] [Related]
4. Proteolysis of an active site peptide of lactate dehydrogenase by human immunodeficiency virus type 1 protease. Tomaszek TA; Moore ML; Strickler JE; Sanchez RL; Dixon JS; Metcalf BW; Hassell A; Dreyer GB; Brooks I; Debouck C Biochemistry; 1992 Oct; 31(42):10153-68. PubMed ID: 1420138 [TBL] [Abstract][Full Text] [Related]
5. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions. Seibold SA; Cukier RI Proteins; 2007 Nov; 69(3):551-65. PubMed ID: 17623840 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of inhibition of the retroviral protease by a Rous sarcoma virus peptide substrate representing the cleavage site between the gag p2 and p10 proteins. Cameron CE; Grinde B; Jentoft J; Leis J; Weber IT; Copeland TD; Wlodawer A J Biol Chem; 1992 Nov; 267(33):23735-41. PubMed ID: 1331099 [TBL] [Abstract][Full Text] [Related]
8. 4-hydroxy-5,6-dihydro-2H-pyran-2-ones.3. Bicyclic and hetero-aromatic ring systems as 3-position scaffolds to bind to S1' and S2' of the HIV-1 protease enzyme. Ellsworth EL; Domagala J; Prasad JV; Hagen S; Ferguson D; Holler T; Hupe D; Graham N; Nouhan C; Tummino PJ; Zeikus G; Lunney EA Bioorg Med Chem Lett; 1999 Jul; 9(14):2019-24. PubMed ID: 10450973 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of human immunodeficiency virus (HIV) type 2 protease in complex with a reduced amide inhibitor and comparison with HIV-1 protease structures. Tong L; Pav S; Pargellis C; Dô F; Lamarre D; Anderson PC Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8387-91. PubMed ID: 8378311 [TBL] [Abstract][Full Text] [Related]
10. Engineering the S1' subsite of trypsin: design of a protease which cleaves between dibasic residues. Kurth T; Grahn S; Thormann M; Ullmann D; Hofmann HJ; Jakubke HD; Hedstrom L Biochemistry; 1998 Aug; 37(33):11434-40. PubMed ID: 9708978 [TBL] [Abstract][Full Text] [Related]
11. Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the asymmetric drug KNI-272. Wang YX; Freedberg DI; Yamazaki T; Wingfield PT; Stahl SJ; Kaufman JD; Kiso Y; Torchia DA Biochemistry; 1996 Aug; 35(31):9945-50. PubMed ID: 8756455 [TBL] [Abstract][Full Text] [Related]
12. Interdependence of Inhibitor Recognition in HIV-1 Protease. Paulsen JL; Leidner F; Ragland DA; Kurt Yilmaz N; Schiffer CA J Chem Theory Comput; 2017 May; 13(5):2300-2309. PubMed ID: 28358514 [TBL] [Abstract][Full Text] [Related]
13. Crystal structures of highly constrained substrate and hydrolysis products bound to HIV-1 protease. Implications for the catalytic mechanism. Tyndall JD; Pattenden LK; Reid RC; Hu SH; Alewood D; Alewood PF; Walsh T; Fairlie DP; Martin JL Biochemistry; 2008 Mar; 47(12):3736-44. PubMed ID: 18311928 [TBL] [Abstract][Full Text] [Related]
14. Specificity of the HIV-1 Protease on Substrates Representing the Cleavage Site in the Proximal Zinc-Finger of HIV-1 Nucleocapsid Protein. Mótyán JA; Miczi M; Oroszlan S; Tőzsér J Viruses; 2021 Jun; 13(6):. PubMed ID: 34201134 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of acid protease catalysis based on the crystal structure of penicillopepsin. James MN; Hsu IN; Delbaere LT Nature; 1977 Jun; 267(5614):808-13. PubMed ID: 895839 [TBL] [Abstract][Full Text] [Related]
16. A series of penicillin-derived C2-symmetric inhibitors of HIV-1 proteinase: structural and modeling studies. Wonacott A; Cooke R; Hayes FR; Hann MM; Jhoti H; McMeekin P; Mistry A; Murray-Rust P; Singh OM; Weir MP J Med Chem; 1993 Oct; 36(21):3113-9. PubMed ID: 8230097 [TBL] [Abstract][Full Text] [Related]
17. Ionization states of the catalytic residues in HIV-1 protease. Smith R; Brereton IM; Chai RY; Kent SB Nat Struct Biol; 1996 Nov; 3(11):946-50. PubMed ID: 8901873 [TBL] [Abstract][Full Text] [Related]
18. Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate -- interactions with frequently occurring glutamic acid residue at P2' position of substrates. Weber IT; Wu J; Adomat J; Harrison RW; Kimmel AR; Wondrak EM; Louis JM Eur J Biochem; 1997 Oct; 249(2):523-30. PubMed ID: 9370363 [TBL] [Abstract][Full Text] [Related]
19. Relative binding free energies of peptide inhibitors of HIV-1 protease: the influence of the active site protonation state. Chen X; Tropsha A J Med Chem; 1995 Jan; 38(1):42-8. PubMed ID: 7837238 [TBL] [Abstract][Full Text] [Related]