BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10913360)

  • 1. alpha-Crystallin facilitates the reactivation of hydrogen peroxide-inactivated rhodanese.
    Del Fierro D; Zardeneta G; Mendoza JA
    Biochem Biophys Res Commun; 2000 Aug; 274(2):461-6. PubMed ID: 10913360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GroEL interacts transiently with oxidatively inactivated rhodanese facilitating its reactivation.
    Melkani GC; Zardeneta G; Mendoza JA
    Biochem Biophys Res Commun; 2002 Jun; 294(4):893-9. PubMed ID: 12061791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative inactivation of rhodanese by hydrogen peroxide produces states that show differential reactivation.
    Horowitz PM; Bowman S
    J Biol Chem; 1989 Feb; 264(6):3311-6. PubMed ID: 2914953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidized GroEL can function as a chaperonin.
    Melkani GC; Zardeneta G; Mendoza JA
    Front Biosci; 2004 Jan; 9():724-31. PubMed ID: 14766403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen peroxide induces the dissociation of GroEL into monomers that can facilitate the reactivation of oxidatively inactivated rhodanese.
    Melkani GC; McNamara C; Zardeneta G; Mendoza JA
    Int J Biochem Cell Biol; 2004 Mar; 36(3):505-18. PubMed ID: 14687928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical modification of bovine liver rhodanese with tetrathionate: differential effects on the sulfur-free and sulfur-containing catalytic intermediates.
    Prasad AR; Horowitz PM
    Biochim Biophys Acta; 1987 Jan; 911(1):102-8. PubMed ID: 3466649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bovine and human alpha-crystallins as molecular chaperones: prevention of the inactivation of glutathione reductase by fructation.
    Blakytny R; Harding JJ
    Exp Eye Res; 1997 Jun; 64(6):1051-8. PubMed ID: 9301487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaperone-like activity of protein disulfide-isomerase in the refolding of rhodanese.
    Song JL; Wang CC
    Eur J Biochem; 1995 Jul; 231(2):312-6. PubMed ID: 7635143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alphab-crystallin-assisted reactivation of glucose-6-phosphate dehydrogenase upon refolding.
    Kumar MS; Reddy PY; Sreedhar B; Reddy GB
    Biochem J; 2005 Oct; 391(Pt 2):335-41. PubMed ID: 15952936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of rhodanese with intermediates of oxygen reduction.
    Cannella C; Berni R
    FEBS Lett; 1983 Oct; 162(1):180-4. PubMed ID: 6311631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. alpha-crystallin assists the renaturation of glyceraldehyde-3-phosphate dehydrogenase.
    Ganea E; Harding JJ
    Biochem J; 2000 Feb; 345 Pt 3(Pt 3):467-72. PubMed ID: 10642503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A chaperone-mimetic effect of serum albumin on rhodanese.
    Jarabak R; Westley J; Dungan JM; Horowitz P
    J Biochem Toxicol; 1993 Mar; 8(1):41-8. PubMed ID: 8492302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational changes accompany the oxidative inactivation of rhodanese by a variety of reagents.
    Horowitz PM; Bowman S
    J Biol Chem; 1987 Jun; 262(18):8728-33. PubMed ID: 3474229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine 254 can cooperate with active site cysteine 247 in reactivation of 5,5'-dithiobis(2-nitrobenzoic acid)-inactivated rhodanese as determined by site-directed mutagenesis.
    Miller-Martini DM; Hua S; Horowitz PM
    J Biol Chem; 1994 Apr; 269(17):12414-8. PubMed ID: 8175646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active rhodanese lacking nonessential sulfhydryl groups contains an unstable C-terminal domain and can be bound, inactivated, and reactivated by GroEL.
    Ybarra J; Bhattacharyya AM; Panda M; Horowitz PM
    J Biol Chem; 2003 Jan; 278(3):1693-9. PubMed ID: 12433928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfhydryl-directed triggering of conformational changes in the enzyme rhodanese.
    Horowitz PM; Criscimagna NL
    J Biol Chem; 1988 Jul; 263(21):10278-83. PubMed ID: 3164722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of chaperone function of alpha-crystallin by methylglyoxal modification.
    Nagaraj RH; Oya-Ito T; Padayatti PS; Kumar R; Mehta S; West K; Levison B; Sun J; Crabb JW; Padival AK
    Biochemistry; 2003 Sep; 42(36):10746-55. PubMed ID: 12962499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical characterization of a reactivatable liposome-bound rhodanese folding intermediate.
    Zardeneta G; Horowitz PM
    Biochemistry; 1993 Dec; 32(50):13941-8. PubMed ID: 8268170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the equilibrium between monomeric alpha-lactalbumin and the chaperoning complex of alpha-crystallin.
    Neal R; Zigler JS; Bettelheim FA
    Biochem Biophys Res Commun; 2001 Jan; 280(1):14-8. PubMed ID: 11162470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protection of a restriction enzyme from heat inactivation by [alpha]-crystallin.
    Hess JF; FitzGerald PG
    Mol Vis; 1998 Dec; 4():29. PubMed ID: 9873067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.