These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 10914013)

  • 21. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p.
    Subramanian M; Qiao WB; Khanam N; Wilkins O; Der SD; Lalich JD; Bognar AL
    Mol Microbiol; 2005 Jul; 57(1):53-69. PubMed ID: 15948949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for a heat shock transcription factor-independent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae.
    Kobayashi N; McEntee K
    Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6550-4. PubMed ID: 2118651
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of translation initiation factor 4A from yeast and mouse in Saccharomyces cerevisiae.
    Prat A; Schmid SR; Buser P; Blum S; Trachsel H; Nielsen PJ; Linder P
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):140-5. PubMed ID: 2119809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction and use of gene fusions to lacZ (beta-galactosidase) that are expressed in yeast.
    Rose M; Botstein D
    Methods Enzymol; 1983; 101():167-80. PubMed ID: 6310320
    [No Abstract]   [Full Text] [Related]  

  • 25. Coregulation of purine and histidine biosynthesis by the transcriptional activators BAS1 and BAS2.
    Daignan-Fornier B; Fink GR
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6746-50. PubMed ID: 1495962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A highly sensitive and non-lethal beta-galactosidase plate assay for yeast.
    Duttweiler HM
    Trends Genet; 1996 Sep; 12(9):340-1. PubMed ID: 8855661
    [No Abstract]   [Full Text] [Related]  

  • 27. Expression of Ty-lacZ fusions in Saccharomyces cerevisiae.
    Bowen BA; Fulton AM; Tuite MF; Kingsman SM; Kingsman AJ
    Nucleic Acids Res; 1984 Feb; 12(3):1627-40. PubMed ID: 6322112
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aym1, a mouse meiotic gene identified by virtue of its ability to activate early meiotic genes in the yeast Saccharomyces cerevisiae.
    Malcov M; Cesarkas K; Stelzer G; Shalom S; Dicken Y; Naor Y; Goldstein RS; Sagee S; Kassir Y; Don J
    Dev Biol; 2004 Dec; 276(1):111-23. PubMed ID: 15531368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of apoptosis and clonogenic survival of cells expressing crmA variants: optimal caspase substrates are not necessarily optimal inhibitors.
    Ekert PG; Silke J; Vaux DL
    EMBO J; 1999 Jan; 18(2):330-8. PubMed ID: 9889190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity.
    Park EC; Szostak JW
    EMBO J; 1992 Jun; 11(6):2087-93. PubMed ID: 1600941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Caspases as targets for anti-inflammatory and anti-apoptotic drug discovery.
    Talanian RV; Brady KD; Cryns VL
    J Med Chem; 2000 Sep; 43(18):3351-71. PubMed ID: 10978183
    [No Abstract]   [Full Text] [Related]  

  • 32. NifH and NifM proteins interact as demonstrated by the yeast two-hybrid system.
    Petrova N; Gigova L; Venkov P
    Biochem Biophys Res Commun; 2000 Apr; 270(3):863-7. PubMed ID: 10772917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model for beta-galactosidase production with a recombinant yeast Saccharomyces cerevisiae in fed-batch culture.
    Hardjito L; Greenfield PF; Lee PL
    Biotechnol Prog; 1992; 8(4):298-306. PubMed ID: 1368453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of a short unique sequence in the yeast HO gene promoter that regulates HO transcription in a SIN1 dependent manner.
    Yona E; Bangio H; Friedman Y; Shpungin S; Katcoff DJ
    FEBS Lett; 1996 Mar; 382(1-2):97-100. PubMed ID: 8612772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling Metazoan Apoptotic Pathways in Yeast.
    Bloomer DT; Kitevska T; Brand IL; Jabbour AM; Nguyen H; Hawkins CJ
    Methods Mol Biol; 2016; 1419():161-83. PubMed ID: 27108439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene identification using the yeast two-hybrid system.
    Bai C; Elledge SJ
    Methods Enzymol; 1997; 283():141-56. PubMed ID: 9251017
    [No Abstract]   [Full Text] [Related]  

  • 37. Yeast two-hybrid system to detect protein-protein interactions with Rho GTPases.
    Aspenström P; Olson MF
    Methods Enzymol; 1995; 256():228-41. PubMed ID: 7476436
    [No Abstract]   [Full Text] [Related]  

  • 38. Construction of expression plasmids for Saccharomyces cerevisiae: application for synthesis of poliovirus protein VP2.
    Verbakel JM; Dekker KA; Rutgers CA; Pouwels PH; Enger-Valk BE
    Gene; 1987; 61(2):207-15. PubMed ID: 3127275
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cloning regulated yeast genes from a pool of lacZ fusions.
    Ruby SW; Szostak JW; Murray AW
    Methods Enzymol; 1983; 101():253-69. PubMed ID: 6310328
    [No Abstract]   [Full Text] [Related]  

  • 40. Increasing specificity in high-throughput yeast two-hybrid experiments.
    Vidalain PO; Boxem M; Ge H; Li S; Vidal M
    Methods; 2004 Apr; 32(4):363-70. PubMed ID: 15003598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.