These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10915884)

  • 1. On the symmetry between eyes of wavefront aberration and cone directionality.
    Marcos S; Burns SA
    Vision Res; 2000; 40(18):2437-47. PubMed ID: 10915884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of primary spherical aberration, spatial frequency and Stiles Crawford apodization on wavefront determined refractive error: a computational study.
    Xu R; Bradley A; Thibos LN
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):444-55. PubMed ID: 23683093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of cone directionality determined by psychophysical and reflectometric techniques.
    He JC; Marcos S; Burns SA
    J Opt Soc Am A Opt Image Sci Vis; 1999 Oct; 16(10):2363-9. PubMed ID: 10517020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cone spacing and waveguide properties from cone directionality measurements.
    Marcos S; Burns SA
    J Opt Soc Am A Opt Image Sci Vis; 1999 May; 16(5):995-1004. PubMed ID: 10234854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The spatially resolved refractometer.
    Burns SA
    J Refract Surg; 2000; 16(5):S566-9. PubMed ID: 11019874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatic and wavefront aberrations: L-, M- and S-cone stimulation with typical and extreme retinal image quality.
    Autrusseau F; Thibos L; Shevell SK
    Vision Res; 2011 Nov; 51(21-22):2282-94. PubMed ID: 21906613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysing the impact of myopia on the Stiles-Crawford effect of the first kind using a digital micromirror device.
    Carmichael Martins A; Vohnsen B
    Ophthalmic Physiol Opt; 2018 May; 38(3):273-280. PubMed ID: 29380408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Images of cone photoreceptors in the living human eye.
    Miller DT; Williams DR; Morris GM; Liang J
    Vision Res; 1996 Apr; 36(8):1067-79. PubMed ID: 8762712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new approach to the study of ocular chromatic aberrations.
    Marcos S; Burns SA; Moreno-Barriusop E; Navarro R
    Vision Res; 1999 Oct; 39(26):4309-23. PubMed ID: 10789425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults.
    Lombardo M; Serrao S; Ducoli P; Lombardo G
    J Cataract Refract Surg; 2012 Jul; 38(7):1147-55. PubMed ID: 22727285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wave aberration of human eyes and new descriptors of image optical quality and visual performance.
    Lombardo M; Lombardo G
    J Cataract Refract Surg; 2010 Feb; 36(2):313-31. PubMed ID: 20152616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength dependence of reflectometric cone photoreceptor directionality.
    Zagers NP; Berendschot TT; van Norren D
    J Opt Soc Am A Opt Image Sci Vis; 2003 Jan; 20(1):18-23. PubMed ID: 12542314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous measurement of foveal spectral reflectance and cone-photoreceptor directionality.
    Zagers NP; van de Kraats J; Berendschot TT; van Norren D
    Appl Opt; 2002 Aug; 41(22):4686-96. PubMed ID: 12153104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directionality of individual cone photoreceptors in the parafoveal region.
    Morris HJ; Blanco L; Codona JL; Li SL; Choi SS; Doble N
    Vision Res; 2015 Dec; 117():67-80. PubMed ID: 26494187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of wavefront aberrations in rabbit and human eyes.
    Chen L; Huang LC; Gray B; Chernyak DA
    Clin Exp Optom; 2014 Nov; 97(6):534-9. PubMed ID: 25069625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Negative Cone Mosaic: A New Manifestation of the Optical Stiles-Crawford Effect in Normal Eyes.
    Miloudi C; Rossant F; Bloch I; Chaumette C; Leseigneur A; Sahel JA; Meimon S; Mrejen S; Paques M
    Invest Ophthalmol Vis Sci; 2015 Nov; 56(12):7043-50. PubMed ID: 26523388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing laser ray tracing, the spatially resolved refractometer, and the Hartmann-Shack sensor to measure the ocular wave aberration.
    Moreno-Barriuso E; Marcos S; Navarro R; Burns SA
    Optom Vis Sci; 2001 Mar; 78(3):152-6. PubMed ID: 11327676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lens-based wavefront sensorless adaptive optics swept source OCT.
    Jian Y; Lee S; Ju MJ; Heisler M; Ding W; Zawadzki RJ; Bonora S; Sarunic MV
    Sci Rep; 2016 Jun; 6():27620. PubMed ID: 27278853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes.
    Marcos S; Burns SA; Prieto PM; Navarro R; Baraibar B
    Vision Res; 2001 Dec; 41(28):3861-71. PubMed ID: 11738452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of directional effects of the retina into computations of optical transfer functions of human eyes.
    Artal P
    J Opt Soc Am A; 1989 Dec; 6(12):1941-4. PubMed ID: 2607387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.