These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 10916160)

  • 1. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism.
    Decker H; Tuczek F
    Trends Biochem Sci; 2000 Aug; 25(8):392-7. PubMed ID: 10916160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switch between tyrosinase and catecholoxidase activity of scorpion hemocyanin by allosteric effectors.
    Nillius D; Jaenicke E; Decker H
    FEBS Lett; 2008 Mar; 582(5):749-54. PubMed ID: 18258201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similar enzyme activation and catalysis in hemocyanins and tyrosinases.
    Decker H; Schweikardt T; Nillius D; Salzbrunn U; Jaenicke E; Tuczek F
    Gene; 2007 Aug; 398(1-2):183-91. PubMed ID: 17566671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa.
    Aguilera F; McDougall C; Degnan BM
    BMC Evol Biol; 2013 May; 13():96. PubMed ID: 23634722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic properties of catecholoxidase activity of tarantula hemocyanin.
    Jaenicke E; Decker H
    FEBS J; 2008 Apr; 275(7):1518-1528. PubMed ID: 18279382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function correlations in tyrosinases.
    Kanteev M; Goldfeder M; Fishman A
    Protein Sci; 2015 Sep; 24(9):1360-9. PubMed ID: 26104241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The o-diphenol oxidase activity of arthropod hemocyanin.
    Zlateva T; Di Muro P; Salvato B; Beltramini M
    FEBS Lett; 1996 Apr; 384(3):251-4. PubMed ID: 8617365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference.
    Solem E; Tuczek F; Decker H
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2884-8. PubMed ID: 26773413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hexamerin, and dipteran arylphorin receptor.
    Burmester T; Scheller K
    J Mol Evol; 1996 Jun; 42(6):713-28. PubMed ID: 8662023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp shares catalytic capabilities of tyrosinases and laccases.
    Sanchez-Amat A; Solano F
    Biochem Biophys Res Commun; 1997 Nov; 240(3):787-92. PubMed ID: 9398646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling Substrate Specificity and Catalytic Promiscuity of Aspergillus oryzae Catechol Oxidase.
    Penttinen L; Rutanen C; Jänis J; Rouvinen J; Hakulinen N
    Chembiochem; 2018 Nov; 19(22):2348-2352. PubMed ID: 30204291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catechol Oxidase versus Tyrosinase Classification Revisited by Site-Directed Mutagenesis Studies.
    Prexler SM; Frassek M; Moerschbacher BM; Dirks-Hofmeister ME
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8757-8761. PubMed ID: 31037807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Amino Acid Residues Responsible for C-H Activation in Type-III Copper Enzymes by Generating Tyrosinase Activity in a Catechol Oxidase.
    Kampatsikas I; Pretzler M; Rompel A
    Angew Chem Int Ed Engl; 2020 Nov; 59(47):20940-20945. PubMed ID: 32701181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic implications of variable stoichiometries of oxygen consumption during tyrosinase catalyzed oxidation of monophenols and o-diphenols.
    Peñalver MJ; Hiner AN; Rodríguez-López JN; García-Cánovas F; Tudela J
    Biochim Biophys Acta; 2002 May; 1597(1):140-8. PubMed ID: 12009413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic properties of hexameric tyrosinase from the crustacean Palinurus elephas.
    Brack A; Hellmann N; Decker H
    Photochem Photobiol; 2008; 84(3):692-9. PubMed ID: 18422877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes?
    Kampatsikas I; Rompel A
    Chembiochem; 2021 Apr; 22(7):1161-1175. PubMed ID: 33108057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and spectroscopic studies on catechol oxidases from Lycopus europaeus and Populus nigra: evidence for a dinuclear copper center of type 3 and spectroscopic similarities to tyrosinase and hemocyanin.
    Rompel A; Fischer H; Meiwes D; Büldt-Karentzopoulos K; Dillinger R; Tuczek F; Witzel H; Krebs B
    J Biol Inorg Chem; 1999 Feb; 4(1):56-63. PubMed ID: 10499103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemocyte components in crustaceans convert hemocyanin into a phenoloxidase-like enzyme.
    Adachi K; Hirata T; Nishioka T; Sakaguchi M
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Jan; 134(1):135-41. PubMed ID: 12524041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural mechanism of SDS-induced enzyme activity of scorpion hemocyanin revealed by electron cryomicroscopy.
    Cong Y; Zhang Q; Woolford D; Schweikardt T; Khant H; Dougherty M; Ludtke SJ; Chiu W; Decker H
    Structure; 2009 May; 17(5):749-58. PubMed ID: 19446530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. O2 activation by binuclear Cu sites: noncoupled versus exchange coupled reaction mechanisms.
    Chen P; Solomon EI
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13105-10. PubMed ID: 15340147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.