BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 10916160)

  • 21. Purification, spectroscopic characterization and o-diphenoloxidase activity of hemocyanin from a freshwater gastropod: Pila globosa.
    Naresh KN; Krupanidhi S; Rajan SS
    Protein J; 2013 Jun; 32(5):327-36. PubMed ID: 23645401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the tertiary structure in the diphenol oxidase activity of Octopus vulgaris hemocyanin.
    Campello S; Beltramini M; Giordano G; Di Muro P; Marino SM; Bubacco L
    Arch Biochem Biophys; 2008 Mar; 471(2):159-67. PubMed ID: 18237542
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic oxidation of 2-aminophenols and ortho hydroxylation of aromatic amines by tyrosinase.
    Toussaint O; Lerch K
    Biochemistry; 1987 Dec; 26(26):8567-71. PubMed ID: 2964867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins.
    Olivares C; Solano F
    Pigment Cell Melanoma Res; 2009 Dec; 22(6):750-60. PubMed ID: 19735457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scaffolded amino acids as a close structural mimic of type-3 copper binding sites.
    Albada HB; Soulimani F; Weckhuysen BM; Liskamp RM
    Chem Commun (Camb); 2007 Dec; (46):4895-7. PubMed ID: 18361361
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of tyrosinase substrate-binding modes reveals mechanistic differences between type-3 copper proteins.
    Goldfeder M; Kanteev M; Isaschar-Ovdat S; Adir N; Fishman A
    Nat Commun; 2014 Jul; 5():4505. PubMed ID: 25074014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial tyrosinases.
    Claus H; Decker H
    Syst Appl Microbiol; 2006 Jan; 29(1):3-14. PubMed ID: 16423650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of the thermodynamics of O[bond]O cleavage for dicopper complexes in enzymes and synthetic systems.
    Siegbahn PEM
    J Biol Inorg Chem; 2003 May; 8(5):577-585. PubMed ID: 12764603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis and interpretation of the action mechanism of mushroom tyrosinase on monophenols and diphenols generating highly unstable o-quinones.
    Fenoll LG; Rodríguez-López JN; García-Sevilla F; García-Ruiz PA; Varón R; García-Cánovas F; Tudela J
    Biochim Biophys Acta; 2001 Jul; 1548(1):1-22. PubMed ID: 11451433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influencing the monophenolase/diphenolase activity ratio in tyrosinase.
    Goldfeder M; Kanteev M; Adir N; Fishman A
    Biochim Biophys Acta; 2013 Mar; 1834(3):629-33. PubMed ID: 23305929
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The basicity of an active-site water molecule discriminates between tyrosinase and catechol oxidase activity.
    Matoba Y; Oda K; Muraki Y; Masuda T
    Int J Biol Macromol; 2021 Jul; 183():1861-1870. PubMed ID: 34089758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxygen binding to tyrosinase from streptomyces antibioticus studied by laser flash photolysis.
    Hirota S; Kawahara T; Lonardi E; de Waal E; Funasaki N; Canters GW
    J Am Chem Soc; 2005 Dec; 127(51):17966-7. PubMed ID: 16366523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase.
    Yoon J; Fujii S; Solomon EI
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6585-90. PubMed ID: 19346471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conversion of crustacean hemocyanin to catecholoxidase.
    Jaenicke E; Decker H
    Micron; 2004; 35(1-2):89-90. PubMed ID: 15036301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.
    Molitor C; Mauracher SG; Rompel A
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1806-15. PubMed ID: 26976571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tarantula hemocyanin shows phenoloxidase activity.
    Decker H; Rimke T
    J Biol Chem; 1998 Oct; 273(40):25889-92. PubMed ID: 9748264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The crystal structure of catechol oxidase: new insight into the function of type-3 copper proteins.
    Gerdemann C; Eicken C; Krebs B
    Acc Chem Res; 2002 Mar; 35(3):183-91. PubMed ID: 11900522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis.
    Panis F; Kampatsikas I; Bijelic A; Rompel A
    Sci Rep; 2020 Feb; 10(1):1659. PubMed ID: 32015350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative modeling of the latent form of a plant catechol oxidase using a molluskan hemocyanin structure.
    Gerdemann C; Eicken C; Galla HJ; Krebs B
    J Inorg Biochem; 2002 Apr; 89(1-2):155-8. PubMed ID: 11931976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural insights into dioxygen-activating copper enzymes.
    Rosenzweig AC; Sazinsky MH
    Curr Opin Struct Biol; 2006 Dec; 16(6):729-35. PubMed ID: 17011183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.