These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 10916261)

  • 1. Analysis of position and isometric joysticks for powered wheelchair driving.
    Cooper RA; Jones DK; Fitzgerald S; Boninger ML; Albright SJ
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):902-10. PubMed ID: 10916261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force control strategies while driving electric powered wheelchairs with isometric and movement-sensing joysticks.
    Dicianno BE; Spaeth DM; Cooper RA; Fitzgerald SG; Boninger ML; Brown KW
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):144-50. PubMed ID: 17436887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a wheelchair virtual driving environment: trials with subjects with traumatic brain injury.
    Spaeth DM; Mahajan H; Karmarkar A; Collins D; Cooper RA; Boninger ML
    Arch Phys Med Rehabil; 2008 May; 89(5):996-1003. PubMed ID: 18452751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancements in power wheelchair joystick technology: Effects of isometric joysticks and signal conditioning on driving performance.
    Dicianno BE; Spaeth DM; Cooper RA; Fitzgerald SG; Boninger ML
    Am J Phys Med Rehabil; 2006 Aug; 85(8):631-9. PubMed ID: 16865017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joystick use for virtual power wheelchair driving in individuals with tremor: pilot study.
    Dicianno BE; Sibenaller S; Kimmich C; Cooper RA; Pyo J
    J Rehabil Res Dev; 2009; 46(2):269-75. PubMed ID: 19533540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of virtual and real electric powered wheelchair driving using a position sensing joystick and an isometric joystick.
    Cooper RA; Spaeth DM; Jones DK; Boninger ML; Fitzgerald SG; Guo S
    Med Eng Phys; 2002 Dec; 24(10):703-8. PubMed ID: 12460730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of differences in powered wheelchair joystick shape on subjective and objective operability.
    Koyama S; Tatemoto T; Kumazawa N; Tanabe S; Nakagawa Y; Otaka Y
    Appl Ergon; 2023 Feb; 107():103920. PubMed ID: 36306702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of four cursor control devices during a target acquisition task for laparoscopic tool control.
    Herring SR; Trejo AE; Hallbeck MS
    Appl Ergon; 2010 Jan; 41(1):47-57. PubMed ID: 19426963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Braking electric-powered wheelchairs: effect of braking method, seatbelt, and legrests.
    Cooper RA; Dvorznak MJ; O'Connor TJ; Boninger ML; Jones DK
    Arch Phys Med Rehabil; 1998 Oct; 79(10):1244-9. PubMed ID: 9779678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SenseJoy, a pluggable solution for assessing user behavior during powered wheelchair driving tasks.
    Rabreau O; Chevallier S; Chassagne L; Monacelli E
    J Neuroeng Rehabil; 2019 Nov; 16(1):134. PubMed ID: 31694645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive feedback control and Fitts' law.
    Gawthrop P; Lakie M; Loram I
    Biol Cybern; 2008 Mar; 98(3):229-38. PubMed ID: 18180947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the safety and durability of low-cost nonprogrammable electric powered wheelchairs.
    Pearlman JL; Cooper RA; Karnawat J; Cooper R; Boninger ML
    Arch Phys Med Rehabil; 2005 Dec; 86(12):2361-70. PubMed ID: 16344036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary evaluation of variable compliance joystick for people with multiple sclerosis.
    Mahajan HP; Spaeth DM; Dicianno BE; Brown K; Cooper RA
    J Rehabil Res Dev; 2014; 51(6):951-62. PubMed ID: 25356558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular hand tiller system for joystick operation of powered wheelchairs.
    Kozole KP; Hedman GE
    Arch Phys Med Rehabil; 1985 Mar; 66(3):193-4. PubMed ID: 3977578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of virtual reality technology in the assessment and training of inexperienced powered wheelchair users.
    Harrison A; Derwent G; Enticknap A; Rose FD; Attree EA
    Disabil Rehabil; 2002 Jul 20-Aug 15; 24(11-12):599-606. PubMed ID: 12182799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control devices for electrically powered wheelchairs: prevalence, defining characteristics and user perspectives.
    Dolan MJ; Henderson GI
    Disabil Rehabil Assist Technol; 2017 Aug; 12(6):618-624. PubMed ID: 27434381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of joystick control during the performance of powered wheelchair driving tasks.
    Sorrento GU; Archambault PS; Routhier F; Dessureault D; Boissy P
    J Neuroeng Rehabil; 2011 May; 8():31. PubMed ID: 21609435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual electric power wheelchair driving performance of individuals with spastic cerebral palsy.
    Dicianno BE; Mahajan H; Guirand AS; Cooper RA
    Am J Phys Med Rehabil; 2012 Oct; 91(10):823-30. PubMed ID: 22660370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isometric joystick: a study of control by adolescents and young adults with cerebral palsy.
    Stewart H; Noble G; Seeger BR
    Aust Occup Ther J; 1992 Mar; 39(1):33-9. PubMed ID: 21790644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of psychomotor delay from the Fitts' law coefficients.
    Beamish D; Bhatti S; Chubbs CS; MacKenzie IS; Wu J; Jing Z
    Biol Cybern; 2009 Oct; 101(4):279-96. PubMed ID: 19862551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.