BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10916702)

  • 1. AMP-activated protein kinase: a critical signaling intermediary for exercise-stimulated glucose transport?
    Goodyear LJ
    Exerc Sport Sci Rev; 2000 Jul; 28(3):113-6. PubMed ID: 10916702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contraction signaling to glucose transport in skeletal muscle.
    Jessen N; Goodyear LJ
    J Appl Physiol (1985); 2005 Jul; 99(1):330-7. PubMed ID: 16036906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the nitric oxide pathway in AMPK-mediated glucose uptake and GLUT4 translocation in heart muscle.
    Li J; Hu X; Selvakumar P; Russell RR; Cushman SW; Holman GD; Young LH
    Am J Physiol Endocrinol Metab; 2004 Nov; 287(5):E834-41. PubMed ID: 15265762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes.
    Yamaguchi S; Katahira H; Ozawa S; Nakamichi Y; Tanaka T; Shimoyama T; Takahashi K; Yoshimoto K; Imaizumi MO; Nagamatsu S; Ishida H
    Am J Physiol Endocrinol Metab; 2005 Oct; 289(4):E643-9. PubMed ID: 15928020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise signalling to glucose transport in skeletal muscle.
    Richter EA; Nielsen JN; Jørgensen SB; Frøsig C; Birk JB; Wojtaszewski JF
    Proc Nutr Soc; 2004 May; 63(2):211-6. PubMed ID: 15294032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise-induced increase in muscle insulin sensitivity.
    Holloszy JO
    J Appl Physiol (1985); 2005 Jul; 99(1):338-43. PubMed ID: 16036907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-intensity contraction activates the alpha1-isoform of 5'-AMP-activated protein kinase in rat skeletal muscle.
    Toyoda T; Tanaka S; Ebihara K; Masuzaki H; Hosoda K; Sato K; Fushiki T; Nakao K; Hayashi T
    Am J Physiol Endocrinol Metab; 2006 Mar; 290(3):E583-90. PubMed ID: 16249251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMP-activated protein kinase and the regulation of glucose transport.
    Fujii N; Jessen N; Goodyear LJ
    Am J Physiol Endocrinol Metab; 2006 Nov; 291(5):E867-77. PubMed ID: 16822958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle.
    Ai H; Ihlemann J; Hellsten Y; Lauritzen HP; Hardie DG; Galbo H; Ploug T
    Am J Physiol Endocrinol Metab; 2002 Jun; 282(6):E1291-300. PubMed ID: 12006359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation of 5' AMP-activated protein kinase activation and glucose uptake stimulation by mitochondrial uncoupling and hyperosmolar stress: differential sensitivities to intracellular Ca2+ and protein kinase C inhibition.
    Patel N; Khayat ZA; Ruderman NB; Klip A
    Biochem Biophys Res Commun; 2001 Jul; 285(4):1066-70. PubMed ID: 11467861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMP-Activated protein kinase is activated by the stimulations of G(q)-coupled receptors.
    Kishi K; Yuasa T; Minami A; Yamada M; Hagi A; Hayashi H; Kemp BE; Witters LA; Ebina Y
    Biochem Biophys Res Commun; 2000 Sep; 276(1):16-22. PubMed ID: 11006075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Disorder of glucose metabolism in skeletal muscle].
    Horike N; Asano T
    Nihon Rinsho; 2005 Feb; 63 Suppl 2():136-40. PubMed ID: 15779357
    [No Abstract]   [Full Text] [Related]  

  • 13. Signalling to glucose transport in skeletal muscle during exercise.
    Richter EA; Nielsen JN; Jørgensen SB; Frøsig C; Wojtaszewski JF
    Acta Physiol Scand; 2003 Aug; 178(4):329-35. PubMed ID: 12864737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of glucose transport and AMP-activated protein kinase during muscle contraction in adenylate kinase-1 knockout mice.
    Zhang SJ; Sandström ME; Aydin J; Westerblad H; Wieringa B; Katz A
    Acta Physiol (Oxf); 2008 Mar; 192(3):413-20. PubMed ID: 17973952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signalling mechanisms in skeletal muscle: role in substrate selection and muscle adaptation.
    Hawley JA; Hargreaves M; Zierath JR
    Essays Biochem; 2006; 42():1-12. PubMed ID: 17144876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMP-activated protein kinase: a key system mediating metabolic responses to exercise.
    Hardie DG
    Med Sci Sports Exerc; 2004 Jan; 36(1):28-34. PubMed ID: 14707764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diphenylene iodonium stimulates glucose uptake in skeletal muscle cells through mitochondrial complex I inhibition and activation of AMP-activated protein kinase.
    Hutchinson DS; Csikasz RI; Yamamoto DL; Shabalina IG; Wikström P; Wilcke M; Bengtsson T
    Cell Signal; 2007 Jul; 19(7):1610-20. PubMed ID: 17391917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dipyridamole alters cardiac substrate preference by inducing translocation of FAT/CD36, but not that of GLUT4.
    Luiken JJ; Coort SL; Willems J; Coumans WA; Bonen A; Glatz JF
    Mol Pharmacol; 2004 Mar; 65(3):639-45. PubMed ID: 14978242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise training-induced improvements in insulin action.
    Hawley JA; Lessard SJ
    Acta Physiol (Oxf); 2008 Jan; 192(1):127-35. PubMed ID: 18171435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen.
    McConell GK; Lee-Young RS; Chen ZP; Stepto NK; Huynh NN; Stephens TJ; Canny BJ; Kemp BE
    J Physiol; 2005 Oct; 568(Pt 2):665-76. PubMed ID: 16051629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.