These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 109168)

  • 1. Effects of strychnine upon different classes of trigeminal subnucleus caudalis neurons.
    Yokota T; Nishikawa N; Nishikawa Y
    Brain Res; 1979 May; 168(2):430-4. PubMed ID: 109168
    [No Abstract]   [Full Text] [Related]  

  • 2. Action of picrotoxin upon trigeminal subnucleus caudalis neurons in the monkey.
    Yokota T; Nishikawa Y
    Brain Res; 1979 Aug; 171(2):369-73. PubMed ID: 111773
    [No Abstract]   [Full Text] [Related]  

  • 3. Excitability changes of trigeminal primary afferent preterminals in brain-stem nuclear complex of squirrel monkey (Saimiri sciureus).
    Shende MC; King RB
    J Neurophysiol; 1967 Sep; 30(5):949-63. PubMed ID: 4964231
    [No Abstract]   [Full Text] [Related]  

  • 4. Postsynaptic potentials in the jaw-opening motoneurons by stimulation of the trigeminal nerves.
    Takata M
    Brain Res; 1979 Mar; 163(1):161-4. PubMed ID: 311670
    [No Abstract]   [Full Text] [Related]  

  • 5. Strychnine sensitive inhibition in the dorsal horn of mammalian spinal cord.
    Bagust J; Green KA; Kerkut GA
    Brain Res; 1981 Aug; 217(2):425-9. PubMed ID: 7248801
    [No Abstract]   [Full Text] [Related]  

  • 6. Excitability changes in trigeminal primary afferent fibers in response to noxious and nonnoxious stimuli.
    Young RF; King RB
    J Neurophysiol; 1972 Jan; 35(1):87-95. PubMed ID: 5008726
    [No Abstract]   [Full Text] [Related]  

  • 7. Strychnine alters response properties of trigeminal nociceptive neurons in the rat.
    Ressot C; Collado V; Molat JL; Dallel R
    J Neurophysiol; 2001 Dec; 86(6):3069-72. PubMed ID: 11731563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The function of the descending root of the fifth nerve.
    Denny-Brown D; Yanagisawa N
    Brain; 1973 Dec; 96(4):783-814. PubMed ID: 4359376
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of strychnine on the primary evoked response and on the corticofugal reflex discharge.
    Towe AL; Mann MD
    Exp Neurol; 1973 Jun; 39(3):395-413. PubMed ID: 4351443
    [No Abstract]   [Full Text] [Related]  

  • 10. Functional properties of neurons in cat trigeminal subnucleus caudalis (medullary dorsal horn). II. Modulation of responses to noxious and nonnoxious stimuli by periaqueductal gray, nucleus raphe magnus, cerebral cortex, and afferent influences, and effect of naloxone.
    Sessle BJ; Hu JW; Dubner R; Lucier GE
    J Neurophysiol; 1981 Feb; 45(2):193-207. PubMed ID: 6257861
    [No Abstract]   [Full Text] [Related]  

  • 11. Strychnine blockade of the non-reciprocal inhibition of trigeminal motoneurons induced by stimulation of the parvocellular reticular formation.
    Castillo P; Pedroarena C; Chase MH; Morales FR
    Brain Res; 1991 Dec; 567(2):346-9. PubMed ID: 1817740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of medullary raphe neurons to electrical and chemical activation of vagal afferent nerve fibers.
    Evans AR; Blair RW
    J Neurophysiol; 1993 Nov; 70(5):1950-61. PubMed ID: 8294964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inhibition effect and the mode of action of electro-acupuncture upon discharges from the pain-sensitive cells in spinal trigeminal nucleus.
    Sci Sin; 1977; 20(4):485-501. PubMed ID: 918649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracuneate mechanisms underlying primary afferent cutaneous processing in anaesthetized cats.
    Soto C; Aguilar J; Martín-Cora F; Rivadulla C; Canedo A
    Eur J Neurosci; 2004 Jun; 19(11):3006-16. PubMed ID: 15182308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of hyperactive trigeminal subnucleus caudalis neurons after experimental trigeminal rhizotomy in response to thalamic sensory relay nucleus stimulation.
    Katayama Y; Tsubokawa T; Sugitani M; Hirayama T
    Neurol Res; 1986 Jun; 8(2):97-101. PubMed ID: 2875412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuropharmacological mechanisms underlying rhythmical discharge in trigeminal interneurons during fictive mastication.
    Inoue T; Chandler SH; Goldberg LJ
    J Neurophysiol; 1994 Jun; 71(6):2061-73. PubMed ID: 7931502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neurological mechanisms of pain. A review.
    Wilson ME
    Anaesthesia; 1974 Jul; 29(4):407-21. PubMed ID: 4212435
    [No Abstract]   [Full Text] [Related]  

  • 18. Interrelation of afferent impluses from different bellies of the temporal muscle of the cat.
    Hamada T; Takata M; Kawamura Y
    J Dent Res; 1974; 53(4):889-96. PubMed ID: 4367174
    [No Abstract]   [Full Text] [Related]  

  • 19. Projections from the trigeminal nucleus caudalis in the squirrel monkey.
    Shende MC; Stewart DH; King RB
    Exp Neurol; 1968 Apr; 20(4):655-70. PubMed ID: 4968979
    [No Abstract]   [Full Text] [Related]  

  • 20. Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat.
    Holland PR; Akerman S; Goadsby PJ
    Eur J Neurosci; 2006 Nov; 24(10):2825-33. PubMed ID: 17156207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.